身近な小型家電製品を どうリサイクルしていくか

調查研究科飯野成憲

発表内容

- □小型家電製品の処理方法と課題
- □小型家電リサイクル法とは
- 口何をリサイクルするのか
 - 輸送効率の視点
 - 環境保護の視点
- ロまとめ

小型家電製品の処理方法と課題

これまでの処理方法

多くは不燃ごみ(燃やせないごみ)として回収 ⇒鉄やアルミニウムを除き、非鉄金属の多くが**埋立処分**

東京都最終処分場

残余年数……数十年

最終埋立処分場の延命 化が不可欠!

しかしそれだけではない

小型家電製品のリサイクルの必要性

最終処分場の延命化

- 金属の大部分が埋立処理
- ●新規最終処分場の立地が困難
- ●残余年数減少の継続

資源制約

- 偏在性の高い金属鉱種の存在
- ●供給や価格乱降下のリスク

環境汚染防止

●不適切な再資源化工程における有害物質の発生

環境負荷低減

- 資源採掘時の廃棄物の発生
- 資源採掘時のエネルギー投入

小型家電リサイクル法とは

正式名称

使用済小型電子機器等の再資源化の促進に関する法律

量の目標

平成27年度までに年14万トン≒国民1人あたり1kg

対象品目

- ①消費者が通常家庭で使用する電気機械器具
- ②効率的な収集運搬が可能
- ③経済性の面における制約が著しくない

28品目を指定

主な回収方式の特徴

回収方式	ボックス回収	ステーション回収	ピックアップ回収	
実施方法例	・ボックス設置 ・専用車両で回収	・ ごみ回収ステー ションで回収 ・ <mark>分別区分を新設</mark>	・ ごみ回収ステー ションで回収 ・ <mark>既存の分別区分</mark> で回収	
回収金属の質	0		A	
回収量の確保		0	0	
排出の容易さ	A	0	0	
ごみの 分別区分の新設 不要	0	×	0	
盗難トラブル	A	A	A	
異物混入の防止	×	A	0	
収集運搬費用	A	A	0	
必要な費用	・ボックス設置・収集運搬・普及啓発	・コンテナ設置 ・収集運搬 ・普及啓発	・ピックアップ	

^{※「}環境省、経済産業省:使用済小型電子機器等の回収に係るガイドライン(Ver.1.1), H26年2月」より一部加筆修正

小型家電リサイクル法における回収品目

- 1 電話機、ファクシミリ装置その他の有線通信機械器具
- 2 携帯電話端末、PHS端末その他の無線通信機械器具
- 3 ラジオ受信機及びテレビジョン受信機
- 4 デジタルカメラ、ビデオカメラ、ディー・ブイ・ディー・レコーダーその他の映像用機械器具
- 5 デジタルオーディオプレーヤー、ステレオセットその他の電気音響機械器具
- 6 パーソナルコンピュータ
- 7 磁気ディスク装置、光ディスク装置その他の記憶装置
- 8 プリンターその他の印刷装置
- 9 ディスプレイその他の表示装置
- 10 電子書籍端末
- 11 電動ミシン
- 12 電気グラインダー、電気ドリルその他の電動工具
- 13 電子式卓上計算機その他の事務用電気機械器具

金属資源があるか?

1 4ヘルスメーターその他の計量用又は測定用の電気機械器具

- 1 5 電動式吸入器その他の医療用電気機械器具
- 16 フィルムカメラ
- 17 ジャー炊飯器、電子レンジその他の台所用電気機械器具
- 18 扇風機、電気除湿機その他の空調用電気機械
- 19 電気アイロン、電気掃除機その他の衣料用又は衛生用の電気機械器具
- 20 電気こたつ、電気ストーブその他の保温用電気機械器具
- 21 ヘアドライヤー、電気かみそりその他の理容用電気機械器具
- 22電気マッサージ器
- 23ランニングマシンその他の運動用電気機械器具
- 2 4 電気芝刈機その他の園芸用電気機械器具
- 2 5 蛍光灯器具その他の電気照明器具
- 26 電子時計及び電気時計
- 27 電子楽器及び電気楽器
- 28 ゲーム機その他の電子玩具及び電動式玩具

効率的な収集 運搬可能か?

何をリサイクルするのか(輸送効率の視点)

金属含有率···· <u>金属重量</u> 機器重量

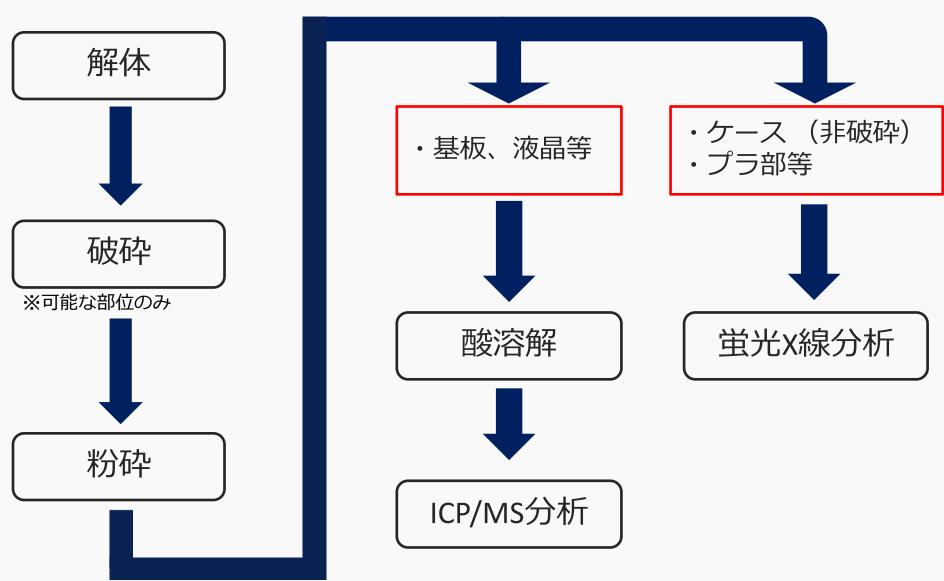
金属含有率高い

⇒有価に、かつ、**低輸送コスト**で売却可能

何をリサイクルするのか(輸送効率の視点)

金属含有率……金属重量 機器重量

例 デジタルカメラの場合


金属重量

デジカメA, 鉄 5g デジカメB, 鉄 7g デジカメC, 鉄 4g デジカメD, 鉄 5g⇒平均5.25g デジカメA, 銅 2g デジカメB, 銅 3g デジカメC, 銅 2g デジカメD, 銅 4g⇒平均2.75g デジカメA, Al 2g デジカメB Al 3g デジカメC Al 2g デジカメD, Al 4g ⇒平均2.75g し 合計 50g

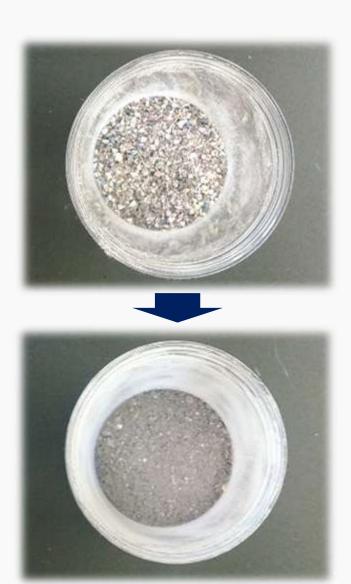
機器重量

デジカメA, 120g デジカメB, 150g デジカメC, 170g デジカメD,130g⇒平均150g

小型家電製品の分析フロー

解体

破砕



粉砕

基板、液晶等

酸溶解

ICP/MS分析

- ・ケース (非破砕)・プラ部等

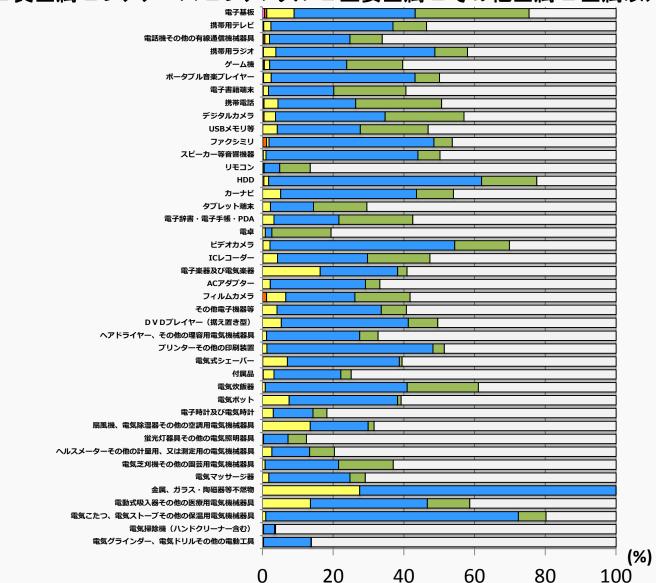
蛍光X線分析

測定対象元素の一覧※

		貴金	禹		レアア	ース		レアメ	タル		主要:	金属		その他金属		7		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	Н																	Не
2	Li	Be											В	С	N	0	F	Ne
3	Na	Mg											Al	Si	Р	S	C	Ar
4	K	Ca	S	Ë	V	Cr	Mn	Fe	ô	Ż	<mark>C</mark>	Zn	Ga	Ge	As	e S	Br	Kr
5	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
6	Cs	Ва	ランタ ノイド	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
7	Fr	Ra	アクチ ノイド															
ر ۱	タノイ	ド系	La	Се	Pr	Nd	Pm	Sm	Fii	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	

※ICP/MS、蛍光X線分析装置の少なくとも一方で測定した元素

U


Ac Th Pa

アクチノイド系

Np Pu Am Cm Bk Cf Es Fm Md No Lr

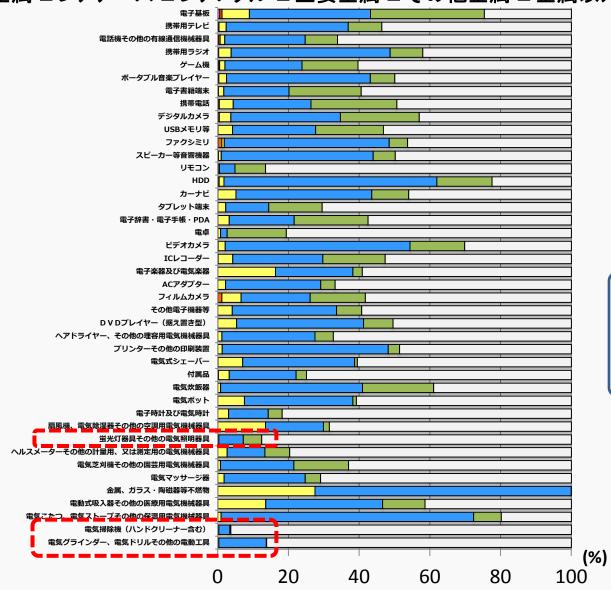
金属含有率の結果

■貴金属 ■レアアース □レアメタル ■主要金属 ■その他金属 □金属以外

貴金属含有率 上位5品目

(%)

	貴金属	レア アース	レア メタル
電子基板	0.6	0.6	7.7
携帯用テレビ	0.3	0.1	2.0
電話機その他の 有線通信機械器具	0.2	0.4	1.3
携帯用ラジオ	0.2	0.1	3.5
ゲーム機	0.2	0.3	1.5


携帯型の機能性材料が多い

レアメタル

Ni、Cr等のステンレス 希少性の低いTi等が大半

金属含有率の結果

■貴金属 ■レアアース □レアメタル ■主要金属 ■その他金属 □金属以外

輸送効率の視点で 有利とはいえない 品目

- ・電気掃除機
- ・照明器具
- ・電気ドリル等

資源端重量と消費端重量

資源端重量

= 関与物質総量(TMR) (Total Material Requirement) 物質1トンを得るために何トンの 天然資源を改変したかという量。 この係数を「TMR係数」という。

採掘

鉱山

=各小型家電中 の金属重量

成型・切削

電子部品

金属ごとのTMR係数

- ●鉄1トンに対し鉄鉱石の採取等に伴う砕石等の量が8トン
- 銅は360トン、金は1,100,000トンに及ぶ

何をリサイクルするのか(環境保護の視点)

資源端重量(=∑(各金属のTMR係数×各金属の重量))

消費端重量(=各小型家電中の金属重量)

資源端重量が大きい⇒資源採掘量が多い品目

⇒資源端重量/消費端重量が大きい品目が優先回収品目

何をリサイクルするのか(環境保護の視点)

資源端重量(=∑(各金属のTMR係数×各金属重量))

消費端重量(=各小型家電中の金属重量)

例 デジタルカメラの場合

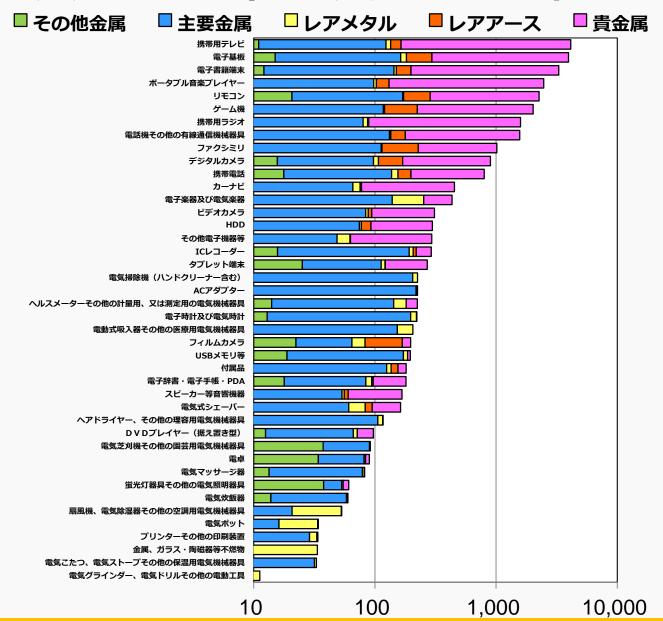
金属重量

デジカメA, 鉄 5g デジカメB, 鉄 7g デジカメC, 鉄 4g デジカメD, 鉄 5g⇒平均5.25g デジカメA, 銅 2g デジカメB, 銅 3g デジカメC, 銅 2g デジカメD, 銅 4g⇒平均2.75g デジカメA, Al 2g デジカメB Al 3g デジカメC Al 2g デジカメD, Al 4g⇒平均2.75g

消費端重量

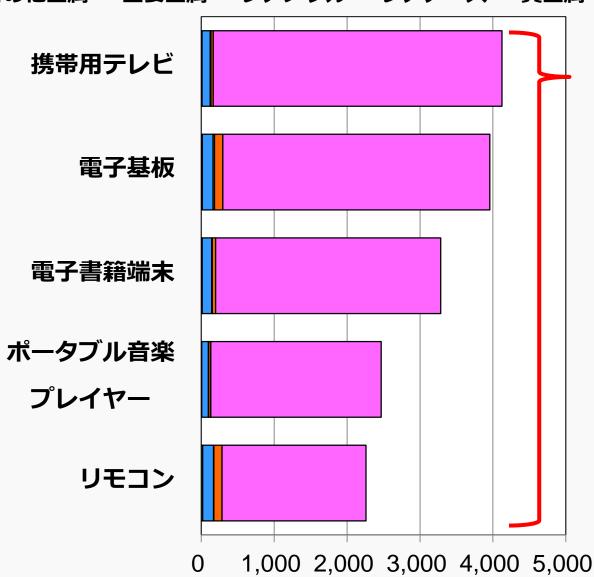
鉄5.25g + 銅2.75g + Al2.75g + · · · · = 14.0g

資源端重量


TMR(鉄)8×鉄5.25g + TMR(銅)360×銅2.75g+ TMR(AI)48× AI 2.75g + · · · · =13,700g

資源端重量

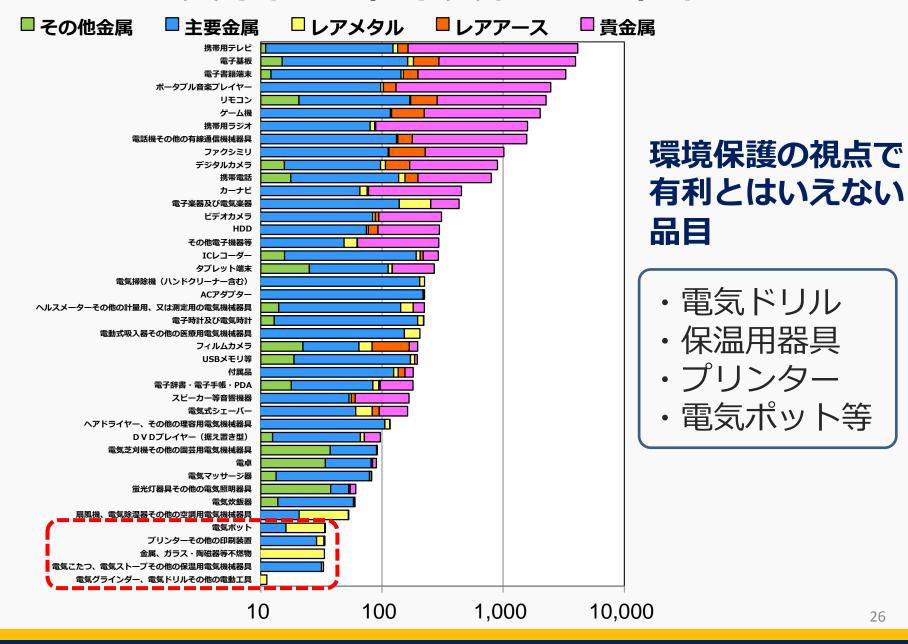
= 13,700g/14.0g=979


消費端重量

資源端重量/消費端重量の結果

資源端重量/消費端重量の結果 上位5品目

■ その他金属 ■ 主要金属 □ レアメタル ■ レアアース ■ 貴金属


- ・携帯型の 機能性材料
- ・貴金属含有量が多い品目が高い

・リモコン·・多種類の家電に付属

多量に回収可能

資源端重量/消費端重量の結果

まとめ

ロ優先的に回収すべき品目

- > 輸送効率の視点
 - ①電子基板、②携帯用テレビ、
 - ③電話機、④携帯用ラジオ、
 - ⑤ゲーム機
- > 環境保護の視点
 - ①携帯用テレビ、②電子基板、
 - ③電子書籍端末、④音楽プレイヤー、
 - ⑤リモコン

帯 型 電

参考

自治体の回収方法を調べるには

→ 自治体により異なります。
各自治体のHPをご覧ください。

都内自治体の回収方法の一覧をみるには

→ 東京都環境局のHPをご覧ください。 https://www.kankyo.metro.tokyo.jp/resource/recycle/small_size_electronics/index.html