平成30年度 東京都環境科学研究所 公開研究発表会 2019年1月10日(木)

分析精度管理とは?

-環境測定データの信頼性を確保する-

(公財) 東京都環境公社 東京都環境科学研究所 環境リスク研究科 根本 忠浩

東京都環境科学研究所の主な役割

- > 調査研究
 - 東京都の環境行政に資する 調査研究
 - > 技術支援
 - 東京都の環境行政に対する 技術的な支援技術研修、分析精度管理など

発表内容;

分析精度管理の実際 ~水質分析を中心に~

- 1 分析精度管理とは?
- 2 分析精度管理の進め方
- 3 事例紹介
- 4 まとめ ~分析精度管理~
- 5 分析精度管理に関する研究事例

1 分析精度管理とは?

- ・背景
- 目的

Key words

- ✓東京の水環境
- ✓水質規制と水質監視の実施体制

背景~東京の水環境

← 過去の多摩川 (1970年代)

- → 現在の多摩川水質が大幅に改善
 - ・下水道の整備
 - ・排水の規制

写真:東京都環境局、東京都環境科学研究所

背景~水質汚濁防止法①

水質規制について

特定事業場(工場など)

公共用水域 (川や海など)

⇒排水基準に適合しない水を 排出してはならない

背景~水質汚濁防止法②

水質監視について

- ✓公共用水域の水質の汚濁状況を 常時監視
- ✓公共用水域等の測定計画を作成
- ⇒水質状況 (環境基準等) を常に把握

背景〜規制と監視の実施体制

東京都環境局

- ・水質規制
- ・水質監視

分析を外部に委託

- ✓民間の分析会社
- ✓毎年競争入札

⇒分析の信頼性を確認する必要性

分析精度管理の目的

☆外部に委託された分析の精度を 管理する(行政からの依頼)

東京都の環境行政に貢献

東京都環境科学研究所から環境局への技術支援

水質以外の分析精度管理

〉有害大気汚染物質

(大気汚染防止法等)

>ダイオキシン類

(ダイオキシン類対策特別措置法等)

についても、精度管理を実施

2 分析精度管理の進め方

環境局が委託する分析会社の、

- **→分析技術**をチェック
 - ✓SOP(標準作業手順書)のチェック
 - ✓試験室への立入に同行
- ▶分析結果をチェック
 - **√クロスチェック**

(同一試料の分析比較)

分析技術をチェック ~SOPのチェック①

SOPとは?

(Standard Operating Procedure) 標準 作業 手順書

- ▶分析会社が作成する具体的な作業手順
- ▶試料採取、分析から記録方法まで記載

ン分析技術をチェック ~SOPのチェック②

トチェック項目

- ✓公定法、JIS (日本工業規格) 等への準拠
- ✓試料の採取・保存方法及び使用器具
- ✓試料の調製方法
- ✓機器の操作方法、維持管理方法
- ✓目的とする濃度が測定できるか

等、「この通り操作すれば適正な 分析結果を得られるか?」 をチェック

ン分析技術をチェック

~試験室への立入に同行①

東京都環境局の担当者が分析会社の試験室へ立入

同行し、分析実施体制を技術的観点からチェック

ン分析技術をチェック

▶チェック項目

- ✓SOPどおりに実施しているか
- ✓測定機器・器具の管理は適正か
- ✓試料の保管、試薬の管理は適正か
- ✓汚染(コンタミ)防止に配慮しているか

等、「測定操作が適性に行われて

いるか?」をチェック

ン分析技術をチェック

- ~平成29年度 SOP, 立入同行実績
 - **✓SOP(標準作業手順書)**審査・・11冊
 - ✓試験室への立入に同行・・14回
 - ⇒報告書を東京都環境局に提出

分析結果をチェック ~クロスチェックの方法

試料採取

委託分析会社

↑同一地点で採取↓した試料の分析

環境科学研究所

分析結果をチェック ~クロスチェック項目

- ✓pH, SS (浮遊物質)
- ✓BOD, COD
- ✓窒素、りん
- ✓重金属類 (鉛、亜鉛など)
- ✓大腸菌群数
- ✓その他

分析結果をチェック

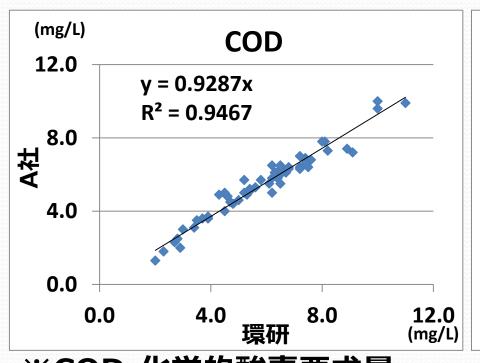
規制

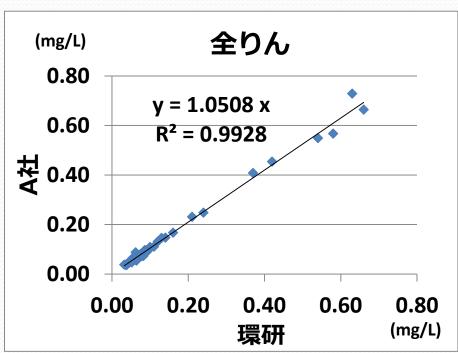
~平成29年度クロスチェック実績

	特定事業場	河川	東京湾	地下水	計
検体数	28	90	48	4	170
項目数	432	758	156	17	1363

3 事例紹介

> クロスチェック結果の例


>不一致事例への対応


平成29年度クロスチェック結果 (抜粋)

受付 受付番号 月日	рН		BOD		COD		SS		重金属				
									Zn		Pb		
	環研	A社	環研	A社	環研	A社	環研	A社	環研	A社	環研	A社	
001	4/20	7.4	7.4	2.0	1.3	5.2	5.7	1	1	0.022	0.026	<0.002	<0.002
002	4/20	7.5	7.6	2.6	1.4	4.6	4.8	5	6	0.023	0.027	0.002	0.002
003	4/20	7.3	7.4	2.5	1.0	4.6	4.8	<1	1	0.014	0.017	<0.002	<0.002
004	4/13	7.7	7.7	4.2	3.9	7.4	6.9	14	15	0.015	0.013	<0.002	<0.002
005	4/13	8.0	7.9	2.6	2.4	5.6	5.3	7	8	0.011	0.008	<0.002	<0.002
006	4/13	7.4	7.3	1.3	1.4	4.8	4.4	33	33	0.012	0.011	<0.002	<0.002
007	5/17	8.8	8.8	0.6	0.7	2.3	1.8	1	1				
800	5/17	7.1	7.2	3.2	2.6	6.5	6.2	5	6	0.019	0.023	<0.002	<0.002
009	5/17	7.0	7.1	3.4	3.2	8.1	7.8	6	6	0.030	0.034	<0.002	<0.002
0010	5/11	7.3	7.4	2.3	2.1	6.7	6.1	14	15				
0011	5/11	7.2	7.3	3.1	3.0	6.3	6.1	24	27	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.			
0012	5/11	7.4	7.4	2.8	2.4	9.1	7.2	76	65	0.027	0.027	0.003	0.003
0013	6/7	6.9	6.9	4.9	4.4	8.0	7.8	9	10				
0014	6/7	7.0	7.1	2.7	2.2	7.2	7.0	10	10				
0015	6/7	7.2	7.3	4.2	3.7	6.5	6.0	9	10				
0016	6/8	6.9	7.0	1.2	1.3	7.4	6.8	<1	1				
0017	6/8	7.2	7.3	1.2	1.3	6.8	6.4	1	1				
0018	6/8	7.9	8.1	1.0	1.1	3.0	3.0	1	1				

-

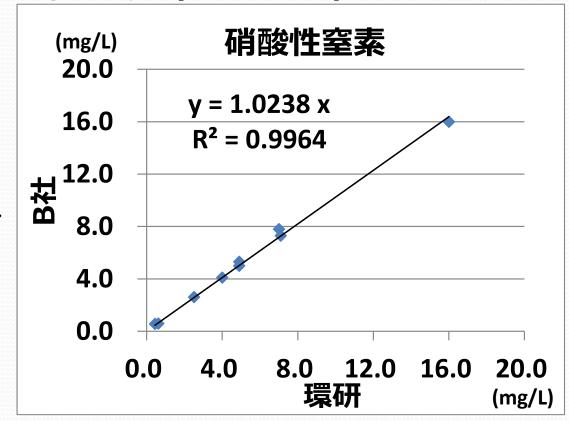
平成29年度クロスチェック結果 (一部)

※COD;化学的酸素要求量

分析会社と当研究所の分析値を グラフでも確認

不一致が生じたら・・

環境局の担当者と調整し、


- ✓ 野帳のチェック (計算ミス、転記ミスなど確認)
- ✓ 検体の取り違え確認
- ✓ 試料保存状態確認
- ✓ 再分析、再度クロス、再度立入

等を実施

平成29年度不一致事例

受付	NO ₃ -N					
番号	環研	B社				
1	7.0	7.8				
2	7.1	7.3				
3	0.44	0.56				
04	4.9	5.3				
○5	_	-				
6	16	16				
7	4.0	4.1	\$555555			
8	4.9	5.0				
9	0.61	0.59				
010	2.5	2.6				
011	<0.01	0.74				

<不一致前(○1~○10)までのグラフ>

平成29年度不一致事例

当研究所の対応(環境局担当者と調整)

- ✓ 再分析(簡易分析)
- ✓ 分析会社の野帳の確認等について助言

分析会社の試料の取り違えと判明

⇒報告値の修正

過去の代表的な不一致事例

- ▶転記時等における記載間違い、計算ミス 野帳確認、ダブルチェック
- ▶検体の取り違え 残試料の再分析、試料の取り違え防止対策
- ▶試料採取時の不均一性
- ▶汚染(コンタミ)の疑い
- ➤分析操作までの**試料の取り扱い** 分析までの間室温で保管していた (アンモニア性窒素の硝化など試料の変質)

 $NH_4-N \rightarrow NO_2-N \rightarrow NO_3-N$

4まとめ ~分析精度管理~

環境局が委託する分析会社の、

✓ 分析技術の確認

(SOP審査、試験室への立入に同行)

✓ 分析結果の信頼性の確保

(クロスチェック、不一致への対応)

⇒東京都の環境行政への貢献

5 分析精度管理に関する研究事例

◎事業場排水における全窒素の挙動について

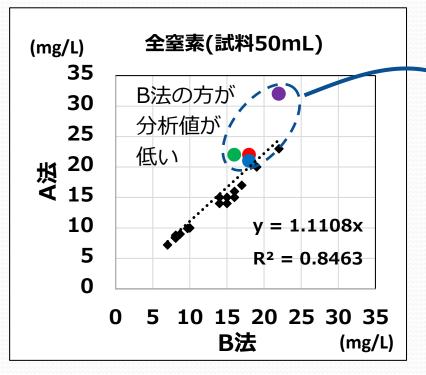
~東京都環境科学研究所年報2018より

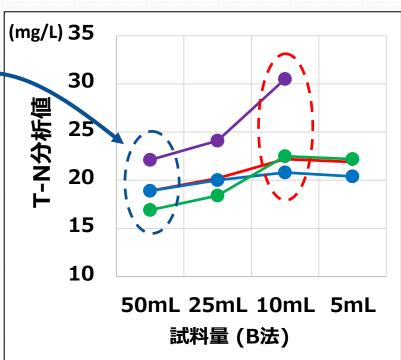
【背景と目的】

- ・全窒素の分析法は複数あり、当研究所はクロスチェックの際の2つの方法で分析している。(A法とB法とする)
- ・稀に2つの分析値が異なることがあるので、その要因を 検討する。(報告値はA法)

JIS K 0102 (2016) 「工場排水試験法 45. 全窒素」より

分析法番号	45.1	45.2	45.3	45.4	45.5	45.6
分析法名称	総和法	紫外線吸 光光度法	硫酸ヒド ラジウム 還元法	銅・カドミ ウムカラム 還元法	熱分解法	流れ分析 法

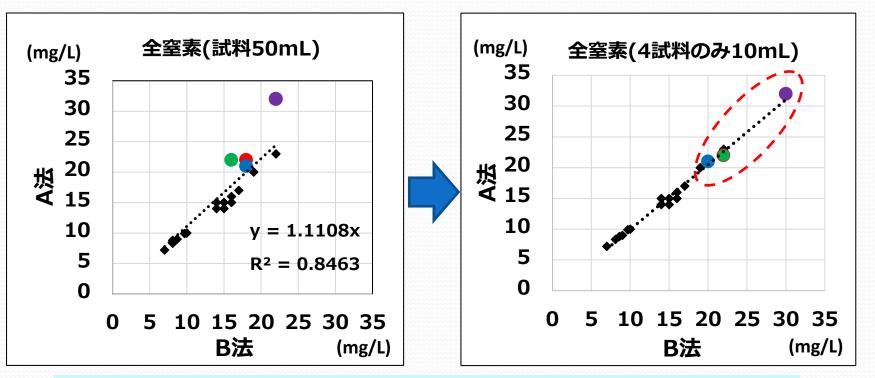

(A法)


(B法)

分析精度管理に関する研究事例

【結果と考察①】

- ・A法とB法で不一致が生じた4試料はいずれもB法の方が分析値が低かった。
- ・それらについて**B法において試料量**を減らして分析 したところ分析値が上昇し、A法に近付いた。



分析精度管理に関する研究事例

【結果と考察②】

- ・前項の4試料について**試料量10mL** (B法) の結果を 採用したところ、**A法とほぼ一致**した。
- ・B法では**試料量に留意する必要がある**ことが示唆された。

⇒研究を通じた技術力の向上

最後に・・

測定・分析研修 (水コース)

<対象> 環境局の(若手技術系)職員

〈目的〉
水試料の採取・分析・データ解析技術の習得

の紹介