東京湾及びその流域河川におけるヘキサプロモシクロデカン（HBCD）実態調査

加藤みか・西野貴裕・木村匠汰*・下間志正

（*元・東京医薬専門学校）

**
【要約】近年の規制により製造・使用等が原則禁止となった臭素系難燃剤のヘキサプロモシクロデカン（HBCD）の都内水環境における実態調査を行った。水質及び底質中HBCD濃度は、いずれも全国と同等の濃度レベルであったが、含有製品の使用・廃棄過程での連続的な流出が懸念されることから、今後は排出源調査を行う予定である。

**
【目的】住宅用断熱材や繊維製品等の臭素系難燃剤として幅広く利用されてきたHBCDは、2013年にポップス条約の廃絶・制限の対象物質に追加、2014年に化審法の一部特種化学物質に指定され、製造・使用等が原則禁止となった。しかし、難分解性・高蓄積性・長期毒性を有することから、過去に排出されたものが長期間にわたり堆積物中に残留して、生物・生態系に悪影響を与えることが懸念されている。また、HBCDは材料と化学結合を持たない添加型難燃剤として使用されてきたことから、規制後も含有製品の洗浄や廃棄の過程で、比較的容易に溶出して環境汚染を招く可能性が考えられる。そこで、都内水環境のHBCD汚染実態を把握するため、東京湾及びその流域河川の水質・底質調査を実施した。

【方法】図1及び表1に示した東京湾9地点、都内8河川19地点で2014年に調査を行った。水質試料はステンレス製ピペット、底質試料はエアーマンバー型採泥器により採取し、図2に示した方法で前処理及び分析を行った。測定対象はα、β、γ、δ、ε-HBCDの5種類の異性体とし、各異性体濃度の合計をHBCD濃度と表記した。

【結果の概要】
(1) 東京湾及び流域河川の水質中HBCD濃度 東京湾・河川の水質中HBCD濃度の調査結果を図3に示す。
東京湾水海では、全ての地点で検出下限値未満（N.D.または定量下限値未満（Trace 0.2ng/L））となった。河川水のHBCD濃度はN.D. 2.0ng/Lとおり、隅田川-神田川水系の上流2地点（清樫橋・落合橋）を除く全ての地点で検出され、図4に示した全国の調査結果1)（N.D. 4.8ng/L）と概ね同等の濃度レベルであった。
HBCDの異性体組成は、全地点でβ、δ、ε-HBCDがN.D.で、γ-HBCDが約7割以上と多くを占めた。工業用HBCD（γ：70%、β：20%、α：5%〜15%）と同様な組成であることから、HBCD含有製品由来の汚染源の影響を反映していると考えられた。

(2) 東京湾及び流域河川の底質中HBCD濃度 東京湾・河川の底質中HBCD濃度の調査結果を図5に示す。
東京湾底質で1.0~5.5ng/g-dry、河川底質でTrace（0.06）〜27ng/g-dryとなり、本調査結果は図4に示した2012年度全国環境実態調査の濃度範囲内で、とくに関東地域とほぼ同等であった。HBCD濃度は、隅田川下流の両国橋にて最高濃度となり、上流から下流の河口沿岸域に向けて高濃度となる傾向が見られ、排出源からの影響を受けている可能性が示唆された。河口付近は流速が速くなり、有機物を多く含む粒子の細かい粒子が堆積しやすいため、礫水性が多く、粒子吸着性の高いHBCDが蓄積したと推察された。強熱減量とHBCD濃度との関係を調べたところ、図6に示すように、目視で粒子の細かい泥を多く含み、強熱減量が10%を超えるような有機物含有量の多い河川の底質試料では、HBCD濃度が比較的高くなる傾向が見られた。
HBCDの異性体組成は、東京湾底質でγ体30〜85%、β体3〜10%、α体12〜60%、河川底質でγ体30〜95%、β体0〜10%、α体5〜60%となり、既存の調査報告等2)と同様であった。なお、δ、ε-HBCDは全地点でN.D.であった。本調査地点における東京湾はγ体が主であったが、底質ではα体の割合が増加し、濃度が高い地点ほどその傾向が強かった。これは、α体が他の異性体に比べて分解性が低いことから、底質への残留がより高かったものと考えられた。
HBCDは近年の規制を受けて、水域への负荷量は減少傾向にあると考えられるが、含有製品の使用・廃棄過程での連続的な流出が懸念されることから、今後は排出源調査や水生生物の汚染実態調査を行う予定である。

【参考文献】
1) 西野：第41回環境保全・公害防止研究発表会講演要旨集（2014）、2)経済産業省「化審法」関連資料、3)環境省：化学物質と環境（2013）
図１ 東京湾及び流域河川の調査地点

表1 河川の調査地点

<table>
<thead>
<tr>
<th>河川</th>
<th>地点</th>
</tr>
</thead>
<tbody>
<tr>
<td>江戸川</td>
<td>①江戸川水門上</td>
</tr>
<tr>
<td>中川</td>
<td>②深川橋、③平和橋</td>
</tr>
<tr>
<td>荒川</td>
<td>④江戸川、⑤近徳橋、⑥平井大橋、⑦荒川河口A、⑧荒川河口B</td>
</tr>
<tr>
<td>柳瀬川</td>
<td>⑨柳瀬橋</td>
</tr>
<tr>
<td>新河岸川</td>
<td>⑩芝脇橋、⑪長倉橋、⑫茂橋</td>
</tr>
<tr>
<td>隈田川</td>
<td>③小台橋、④白壁橋、⑤間国橋、⑥越川河口</td>
</tr>
<tr>
<td>矮正寺川</td>
<td>⑦落合橋</td>
</tr>
<tr>
<td>神田川</td>
<td>⑧和田見橋、⑨江川橋</td>
</tr>
</tbody>
</table>

図3 東京湾・河川の水質中HBCDs 濃度

東京湾底泥中HBCDs濃度は全ての地点で検出下限値未満(N.D.)または定量下限値未満(Trace<0.2ng/L)、河川水はN.D.〜20ng/Lとなった。

図4 全国の水質・底質中HBCDs濃度

東京湾及びその流域8河川の水質・底質中HBCDs濃度は、全国の調査結果と較べ同等の濃度レベルであった。

図5 東京湾・河川の底質中HBCDs濃度

東京湾底泥中HBCDs濃度は1.0〜5.5ng/g-dry、河川底質はTrace(0.00〜2.7ng/g-dry)となった。上流より下流の河口に沿って高濃度となる傾向が見られ、排出源から流出したHBCDが下流に蓄積していると推察された。

図6 河川底質の強熱滅量とHBCDs濃度との相関

有機物含量の指標となる強熱滅量が10%を超えるような河川底質試料では、HBCDs濃度が比較的高い傾向が見られた。有機物を多く含む微小な細かい粒子に、持続性が高く、粒子吸着性の高いHBCDが蓄積していると推察された。