東京タワーにおける高度別亜硫酸ガス濃度と気象条件との関係について—第2報—

福岡 三郎
宇田川 潮
春川 碩雄
舟島 正直
岩崎 好陽

1 はじめに

東京都では、東京タワーにおいて1964年から気象常時調査を、また1969年からは亜硫酸ガス常時調査を実施している。これらの調査は何れも高度別調査であり、風向風速は高度別3点（25, 107, 253m），温度は高度別6点（25, 64, 103, 169, 221, 250m），亜硫酸ガス常時調査は高度別3点（25, 125, 225m）にそれぞれ調査地点を有するものである。

従来、夏、冬各2週間ずつ行なわれてきた。大気汚染立体制観は、限られた期間のものであり、東京都における大気汚染の立体制観を究明するには不十分なものであった。その点、昭和44年3月から測定を開始した亜硫酸ガス高度別常時調査は、年間を通じた資料が得られるものであり、その意味では世界的に例をみない資料となるものである。これらの資料は、大気汚染の立体制観を究明するうえにおいて重要な手がかりを与えてくれるものと思われる。

1969年の年報では、主として春季における東京タワー亜硫酸ガス汚染状況と気象条件との関係について報告したが、今回は1969年3月～1970年2月までの1年間の資料を用いて、東京タワーにおける高度別亜硫酸ガス汚染状況と気象条件との関係について、そのあらましを報告したい。

2 亜硫酸ガスの季節別汚染状況

まずはじめに亜硫酸ガス濃度の月別測定結果から検討しよう。表1に東京タワーのSO₂濃度月別平均値を高度別に示す。

表1にみるとおり、高度別では125mの地点における亜硫酸ガス濃度が高く、年間平均値が10ppmをこえている。とくに3～8月という春、夏の季節の濃度が高く月平均値はいずれも10ppmをこえている。

25m地点の濃度は、年平均値では225m地点よりやや高い程度であるが、その中でもとくに8月と12月～2月の各月の平均濃度が高いため、この地点での汚染源の影響が強く出ていると思われる。

225m地点では、125mと同じく3～8月の時期に濃度

<table>
<thead>
<tr>
<th>月</th>
<th>1969年3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
<th>1970年1月</th>
<th>2月</th>
<th>年平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>25m</td>
<td>7.4</td>
<td>3.4</td>
<td>4.9</td>
<td>4.3</td>
<td>8.3</td>
<td>11.8</td>
<td>7.4</td>
<td>6.3</td>
<td>9.6</td>
<td>13.7</td>
<td>10.9</td>
<td>11.9</td>
<td>8.3</td>
</tr>
<tr>
<td>125m</td>
<td>11.8</td>
<td>10.2</td>
<td>12.0</td>
<td>12.7</td>
<td>12.6</td>
<td>12.9</td>
<td>9.8</td>
<td>5.6</td>
<td>7.9</td>
<td>8.1</td>
<td>9.0</td>
<td>9.8</td>
<td>10.2</td>
</tr>
<tr>
<td>225m</td>
<td>8.3</td>
<td>7.6</td>
<td>11.1</td>
<td>10.4</td>
<td>8.6</td>
<td>11.1</td>
<td>7.0</td>
<td>6.1</td>
<td>6.1</td>
<td>5.6</td>
<td>5.4</td>
<td>7.3</td>
<td>7.9</td>
</tr>
</tbody>
</table>

表2 東京タワー高度別亜硫酸ガス濃度月別平均値（単位：ppm)

<table>
<thead>
<tr>
<th>高度</th>
<th>測定時間数</th>
<th>10ppm未満</th>
<th>10ppm〜20ppm</th>
<th>20ppm〜30ppm</th>
<th>30ppm〜40ppm</th>
<th>40ppm〜50ppm</th>
<th>50ppm以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>25m</td>
<td>7,948</td>
<td>4,905</td>
<td>2,040</td>
<td>451</td>
<td>116</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>125m</td>
<td>7,684</td>
<td>4,345</td>
<td>2,283</td>
<td>692</td>
<td>226</td>
<td>94</td>
<td>44</td>
</tr>
<tr>
<td>225m</td>
<td>7,266</td>
<td>5,272</td>
<td>1,256</td>
<td>435</td>
<td>170</td>
<td>77</td>
<td>56</td>
</tr>
</tbody>
</table>
の高まりをみせ、12～2月の冬季はさほど濃度の上昇はみられない。

高度別3地点いずれも8月という真夏の時期に濃度が高まっており、いずれも月平均濃度が10ppmをこえているのは注目すべきことだろう。

3 高度別亜硫酸ガス濃度階級別頻度分布

つぎに、亜硫酸ガス濃度を、階級別に分けてどのように頻度分布を示しているかみてみよう。表2に高度別亜硫酸ガス濃度階級別頻度分布を示す。

10ppm以上の高濃度亜硫酸ガスの出現回数は、25m地点では、年間総時間の約30%、125m地点では約40%、225m地点では約30%、また20ppm以上の出現回数では、25m地点で約7%、125m地点で12%、225m地点で8%となっているが、各地点ともかなりの率で高濃度亜硫酸ガスが出現している。とくに125m、225m地点における50ppm以上の著しい濃度の出現回数が多いのが目立つ。25m地点では50ppm以上が9回であるに対し、125m地点では44回、225m地点では56回と上層に行く程著しい高濃度の出現回数が多く注目すべきことだろう。

100mの高度差によって、上空に著しい濃度のSO₂が存在することは、拡散理論のうえから注目すべきことで、排出SO₂が均一に稀釈、拡散されずに、汚染空気塊として東京クラーク上空を通過しているということも想定できるが、この調査結果からは判断がむずかしい。

4 亜硫酸ガスの日変化

東京タワーにおける高度別の各地点における亜硫酸ガス濃度の日変化状況について検討してみよう。図1～3に東京タワー各地点における季節別亜硫酸ガス濃度の日変化グラフを示す。

25m地点の亜硫酸ガス濃度の日変化パターンは、ほぼ2山型で冬は午前のピークがきわだって高く、夏は午後のピークの方が午前よりやや高い。春、秋は大体同じ位の高さのピークである。そして夏のみピークの出方がややおそく、午前のピークは11時頃。午後のピークは15～18時頃まで続続性がある。

125m地点の日変化パターンは、不完全な2山ないし1山型で、いずれの季節においても午前のピークが1日の中で一番高い。25m地点同様冬はピークが早く出る傾向
にあり，春，秋はそれより1時間，夏は2時間ピークが続く。
225m地点の日変化パターンは，夏は3山型，春と冬は2山型，秋は1山型のタイプで，ピークの出方は25，125m地点と同じく冬が一番早く10時頃，夏は11時から午後1時頃にかけて，秋は13時頃，春は11時頃で夕方17時頃にピークが出る。

冬季，午前中のピーク出現時間は，下層程早く，上層程おそい。反対に午後に上層程ピークが早く，下層程おそい。高度別の各点に影響を与える気象条件の差異がこのようならがいを出現させるのだろう。一般的には上層225m地点には周辺汚染源の影響は少ないものと思われ225m地点の午前のピークは，海風によってもたらされる京浜工業地域の汚染質によるものと思われる。

それに対して下層の地点では，周辺汚染源の発発化による濃度の上昇と，フグ液シンによる影響によって午前中のピークがやや早い時間に形成されているのだろう。

周辺汚染源が余り活発でない夏季の午前のピークは，冬季に比べおぞくなるのは当然であろう。

5 風向風速と亜硫酸ガス濃度との関係
最後に東京タワー高度別の亜硫酸ガス濃度がどのような気象条件（風向・風速）の時に，高くなるかを検討してみる。

図4～7に季節別の風向別亜硫酸ガス平均濃度を，汚染風配図として示す。

春の高度別のSO₂汚染風配図をみてみると，225，125m両地点ともSSWの風でSO₂濃度が著しく高まっていることがわかる。Nを中心とする北成分の風では，SO₂濃度はきぼほど高まらない。25m地点では風向によるSO₂平均濃度の差異はりより見当が得ない。

夏の場合，225，125mではS～SSWの風でSO₂濃度が高まっているが，北成分の風では相変わらず濃度が低い。25m地点では，春より多少傾向が顕著になり，SEの風を中心としてSO₂濃度が高まる傾向にある。

秋では，225，125m地点とも傾向は変わらないが，北成分の風と南成分の風との平均濃度の差はなくなりつつある。25m地点では依然として傾向がはっきりしない。

冬になると，225m，125m地点では傾向は変らず南成
図4 高度別亜硫酸ガス濃度汚染風配図－春－

図5 －夏－ (44.6.1～44.8.31)

図6 －秋－ (44.9.1～44.11.30)
図7 冬
(44.12.1～45.2.28)

図8 風速別塩酸ガス平均濃度
6 まとめ

東京タワー高度別SO₂常時調査結果を、一年間にわたって解析・検討しておかえたことをまとめると下記のようにになる。

(1) 東京タワーの各高度にSO₂汚染をもたらす汚染源は、225m、125mと25mとでは異なるものを考えられる。
すなわち、225m、125m地点に汚染をもたらしている汚染源は東京タワーの南側に位置する川崎、横浜の高層突
破の発生源であり、25m地点に汚染をもたらすものは、周辺汚染源である。

(2) このことは、東京タワー高度別SO₂濃度日変化カーブにおいて、午後のピーク出現時間が下層程早く、上層程おそいこと、ならびに225m、125m地点の汚染主風
向がS、S SWであるのに対し、25m地点のSO₂主風向がE〜WSWであることなどから容易に判断できる。

(3) 225m、125m地点で、SO₂0.5 ppm以上の濃度がしばしば出現していることからみて、かなり高濃度の
SO₂が、東京タワー上空を通じていると思われる。
ただ、この高濃度SO₂が汚染空気塊としてただよっているのか、拡散理論どおり一定の巾をもって、稀釈されな
がら流れているのかは調査結果からは解らない。

参考資料
1 東京都公害研究所年報第1巻第1部
2 公害と東京都