浮遊粒子状物質自動測定機の評価

- β線吸収型自動測定機について -

朝来野義彦 石黒晃吉

1 はじめに

浮遊粒子状物質（以下 SPM と言う）は、その自体の持つ毒性のほか、ガス状污染物質による人体影響を増大させることが知られている。1972年に設定された環境基準は、呼吸器を通じて体内に取り込まれる粒子径10ミクロン以下の成分（Respirable Dust）の1時間値と24時間値について、それぞれ0.20mg/m³、0.10mg/m³と定められている。また、測定法については、浮遊捕集法を基準測定法とし、精度の点で基準法では測定できない1時間値の補助的手段として相対濃度測定法を定め、条件として、基準測定法によって測定した重量濃度と一定の関係を持つことが指摘されている。その条件に合致した測定機として、裏貼り式（デジタル微差計と呼ばれている）が示され1978年度末で約1,000台が全国の基準監視所に設置されている。この相対濃度測定機は、原理的に SPM の物理的性質（粒径分布、吸収率）や化学的組成によって重量濃度への換算値（P値とよんでいる）が異なることから、年2回以上基準測定機と比較測定によってP値を補正して用いることになっている。

しかし、1972年に環境基準が設定されて以来、国の指針を完全に準拠した SPM の常時監視をおこなっている自治体は極めて少ない。基準設定時に資料として示された2)結果と異なり、基準測定法と相対濃度測定法の関係が常に変動し、信頼できる測定が保証できないことが3)4)5)からP値測定の意図を、自治体に失なわせる要因となっている。

われわれは、SPM の重量濃度を、原理的に組成に関係なく測定可能な方法として、β線吸収型を提案し、いくつか試験測定を実施してきた。6)

環境署も、新しい SPM 相対濃度測定法として、SP Mの付着によって起こる粒度振動子の振動周波数の変位現象を利用したピーケンパントース型とβ線吸収型について1977年から検討を始めた。

本報は、環境庁の委託により、新で製品化されているβ線吸収型自動測定機について深く、信頼度を基準測定法との同時測定等から比較検討したものである。

2 測定原理

β線は、物質に吸収される性質を持っている。その吸収率は、物質の性状に依存せず、β線のエネルギーによって決まることが知られている。物質を透過する際のβ線の吸収と物質の厚さは以下のよう関係にある。

浮上に捕集された SPM の厚さは、(1)式で示される。

$$D = \frac{X \cdot Q}{A} \quad \ldots (1)$$

$$D: SPM の浮上上の厚さ (mg/cm^2)$$

$$X: SPM の大気中濃度 (mg/cm^2)$$

$$Q: 吸引空気量 (m^3)$$

$$A: 材収断面 (m^2)$$

また、浮上に捕集された SPM による β 線の吸収は、(2)式で示される。

$$N_M = NBE^{-\mu \cdot D} \quad \ldots (2)$$

$$N_M: 研磨後の計数値 (count)$$

$$N_B: 研磨前の計数値 (count)$$

$$\mu: 質量吸収係数 (cm^2/μg)$$

したがって、(1)、(2)式から SPM は、(3)式で求められる。

$$X = \frac{K}{q \cdot t} \cdot \frac{N_B}{N_M} \quad \ldots (3)$$

$$X: 吸引定数 (A/μg)$$

$$q: 吸引空気量 (cm^3/min)$$

$$t: グループ時間 (min)$$

( $$Q = q \cdot t$$)

$$\mu$$ は前述のように β 線のエネルギーによって決まり、エネルギーが小さいほど大きくなる。
3 構造

現在、わが国では4社が製品化しているが、図1にその一例を示した。試験には、市30〜40mmのチップ状のガラス板を被験材料の強度を測るためには、試験片を常温下に有機物を添加したもので使用されている。試験片は、20〜25mmのストップス式で、集塵部と同一のプラント値（NB）をあらかじめ測定し、メモリー回路に記憶する。一定時間集塵した後（通常は1時間）β線源とβ線検出器が移動し、（試紙だけが移動する経路も）NMを計数し、演算回路で偏差SPM濃度（X）を算出表示する。校正定数Kは、理論的にも求めることができるが構造上固有の要因もあるので、既知厚のマイラーやアルミの薄膜を用いて決定する。従来の相対密度測定法、差異測定法との比較によってのみ校正されるので対しもっとも大きな相異点といえる。表1に比較試験を行った機械の規格を示した。

第1図 統計図

表1 各経度の規格

<table>
<thead>
<tr>
<th>経度</th>
<th>経線</th>
<th>位置</th>
<th>長さ（mm）</th>
<th>抽残率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>147</td>
<td>45.5</td>
<td>22.6</td>
<td>80</td>
</tr>
<tr>
<td>A</td>
<td>147</td>
<td>40</td>
<td>16.5</td>
<td>118</td>
</tr>
<tr>
<td>C</td>
<td>147</td>
<td>8</td>
<td>7.0</td>
<td>35.5</td>
</tr>
</tbody>
</table>

4 比較試験

(1) 試験方法

β線検出型は、原理的には、組成に関係なくSPMを測定できるが、実験の製作については、いくつかの誤差要因が考えられるので、精度や信頼性について比較試験によって検討する必要がある。SPMについては、他のガス状汚染物質とは異なる標準物質がない。したがって、大気中のSPMを用いて試験をとざすを得ない。この際、基準となる濃度は、LowVolを用いた污気検査方法による測定法を用いる。試験は精度と信頼性、安全性について実施した。

試験は1978年10月〜79年3月に公認屋上でA・B・C3社の同一機種各各台、基準測定法であるサイクロン型LowVol、現在の相対密度測定機（用電式）各1台の計8台を同時測定する方法で実施した。

(2) 精度

精度は同一機種間の機差の大きさで判断した。データの解析は、1時間値については约20日間（各週2〜3日をランダムに選んだ）、24時間値については全データについておこなった。

平均 \( \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{ij} \) ④

\( i \)：測定機番号（1, 2）

\( j \)：測定時間

標準偏差 \( \sigma_i = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (x_{ij} - \bar{X})^2} \) ⑤

相対偏差 \( \eta_i = \frac{\sigma_i}{\bar{X}} \) ⑥

絶対偏差 \( \sigma_j = |x_{ij} - x_{ij}| \) ⑦

以下 \( \sigma_j \) と \( \eta_j \) について解釈

平均相対偏差 \( \eta = \frac{1}{n} \sum_{j=1}^{n} \eta_j \) ⑧

\( \eta_j \) の標準偏差 \( \sigma_\eta = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (\eta_j - \bar{\eta})^2} \) ⑨

(3) 信頼性

信頼性については、LowVol（48時間平均）との比を中心に次の項目について解析した。

\( F_i \) 値 \( F_i = x_i / z_i \) ⑩

\( y_i \)：LowVolの\( i \)番目の測定値

\( z_i \)：比較機種2台の\( i \)番目の平均値

\( F_i \) 値の標準偏差 \( \sigma_F = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (F_i - F)^2} \) ⑪

計算は、当所のコンピューターを用いておこなった。

5 試験結果

表2は、1時間値、24時間平均値について上記のような
表2 機差

<table>
<thead>
<tr>
<th>機数</th>
<th>時間値</th>
<th>1時間値</th>
<th>24時間値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\overline{y}$</td>
<td>$\sigma_1$</td>
<td>$n$</td>
</tr>
<tr>
<td>A</td>
<td>447 50.7 452 24.7 21.4 276 17.8 12.5 127.5 9.5 79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>654 64.7 448 32.9 28.4 219 21.9 15.2 167.5 17.9 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>472 46.6 479 34.7 30.1 378 12.6 11.3 84.7 10.7 9.1 74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

全濃度域 | 50 µg/m³以上 | 全濃度域 | 50 µg/m³以上

表3 F値の比較

<table>
<thead>
<tr>
<th>機器番号</th>
<th>F</th>
<th>$\sigma_F$</th>
<th>$\max F$</th>
<th>$\min F$</th>
<th>回帰式</th>
<th>関係関数</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.986</td>
<td>0.165</td>
<td>1.34</td>
<td>0.57</td>
<td>$Z = 0.87y + 7.8$</td>
<td>(n=51)</td>
</tr>
<tr>
<td>B</td>
<td>1.224</td>
<td>0.242</td>
<td>1.63</td>
<td>0.50</td>
<td>$Z = 0.55y + 15.5$</td>
<td>(n=72)</td>
</tr>
<tr>
<td>C</td>
<td>1.069</td>
<td>1.546</td>
<td>1.74</td>
<td>0.23</td>
<td>$Z = 0.52y + 45.7$</td>
<td>(n=45)</td>
</tr>
<tr>
<td></td>
<td>0.570</td>
<td>0.140</td>
<td>0.82</td>
<td>0.23</td>
<td>$Z = 0.79y + 46.4$</td>
<td>(n=35)</td>
</tr>
</tbody>
</table>

表4 β線全計数値と標準偏差の関係

<table>
<thead>
<tr>
<th>全カウント</th>
<th>$\sigma$</th>
<th>$2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.0100</td>
<td>0.0200</td>
</tr>
<tr>
<td>10000</td>
<td>0.0032</td>
<td>0.0064</td>
</tr>
<tr>
<td>50000</td>
<td>0.0014</td>
<td>0.0028</td>
</tr>
<tr>
<td>100000</td>
<td>0.0010</td>
<td>0.0020</td>
</tr>
<tr>
<td>150000</td>
<td>0.0008</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

目的の主なものをまとめたものである。

また、図2には濃度率別に $i = 1, 2$ が共に0～20 µg/m³、21～50 µg/m³、51～100 µg/m³、101 µg/m³以上の4段階に分ける $\overline{y}$ と $\sigma_2$ について示した。（全データについて）この結果から、1時間値についても50 µg/m³を超える濃度域では比較的小さな機差を示している。

信頼性を示すF値、$\sigma_F$ については表3に示すところである。この関係をグラフで示したのが図3であるが、Low-Valの濃度が50 µg/m³以下で、低いF値を示す傾向が各機種とも認められるが、原因は不明である。

6 考察

β線吸収型 SPM測定機の誤差要因は次のことが考えられる。

① β線源の捕存統計的β線濃度のバラツキ
② 吸収率Kの決定の際に生じる機械的誤差
③ 検知器自身によるフランク修正項の誤差
④ β線検出部の電気的雑音

図3 F値と濃度の関係

この中で濃度によって変動するのは①である。β線には表4に示すように、全カウント数とバラツキの関係がある。通常のSPM濃度域ではNR/NM ≈ 0.002 ～0.050程度なので、全カウントが5万以下では、低濃度域で大きな誤差を生じることになる。

②はF値に対する誤差の要因となる。Aについてはほとんど問題はないと言えるが、B、Cについては平均値が低く問題がある。③は異常値の要因となるので測定に影響しない。高濃度域での分散が大きい場合は、この点に欠点を持っていることが指摘される。

7 まとめ

NO₂の環境基準24時間平均0.04 ppm、SO₂ 0.04 ppmに対する各種の測定機の信頼性は、0.010 ppm前後と言われている。（変動係数50％）この値は、上述の0.04 ppmの25％とされる。SPMの24時
開環境基準値 100 μg/m³の場合の 25 μg/m³と対応する。試験の結果から、変動係数 50％は 30 μg/m³、前後となり、NO₂の場合に比べるとやや大きくなっていく。

精度の向上には、検出器の計数能力を増加させ、カウント数を少なくとも N0、NMに10万カウント以上にすることが表4からも必要である。また、カソードの位置が検出器と線源に対して、常に平行でないと、散乱による影響が現われる。試験に供した製品は、製造上の加工技術上のミスによるとと思われるカソードの欠陥がみられた。

β線吸収型の特長は、標準アーゼンゾルがなくても、等価線源による校正によって、プムの組成と関係なく、重量濃度と一定の関係が得られることが、原理的には明らかである。換算係数（P値）の精度や変動の大きい場合は、主として製造上の欠陥によるもので解決できる性質のものである。

SPEのモニターは、異常現象発生時等には、組成の把握の必要性が強調されている。ビエゾバランス法や散乱差は、試料が保存されないが、β線吸収法は夜間吸収方法で分析用検体を得ることが可能である。この点からも、精度と信頼性の高いβ線吸収型測定機の完成が望まれる。

ヨーロッパやアメリカでは、すでに实用化されており、基準測定法に規定されている例もある。

参考文献
1）環境庁大気汚染調査報告書 2）浮遊粒子状物質に関する測定方法について（昭和47年6月）
3）野上祐作：水島地域におけるデジタル化じんじの値に関する検討、第18回大気汚染全国協議会要旨集（1977）
4）佐藤光雄ほか：長野県におけるデジタル化じんじの値について、全国公害研究誌 vol.4, No.2, pp42-46（1979）
5）日本環境衛生センター：浮遊粒子状物質の測定法に関する調査報告書（昭和52年3月）
6）朝倉野国彦：低レベルO₃-14吸収によるSPEの連続測定、第17回大気汚染全国協議会要旨集（昭和51年11月）
7）Rudolf B. Husar："Atmospheric Particulate mass monitoring with a β Radiation Detector."
Atmospheric Environment vol.8, pp.183-188（1978）
8）Macias, R. S., Rudolf B. Husar："Atmospheric Particulate mass measurement with beta
attenuation mass monitor."
9）Heinrich Drees, Essen und Franz spoof，Mißheim "Anwendungs- und Fehlermöglichkeiten der radiometrischen Staubmessung zur Überwa-
chung der Emission, Immission und von Arbeitsplätzen."
Staub-Reinhalt. Luft vol. 38, Nr. 11, pp.431-435（1978）