騒音予測のための多車線定常交通流調査結果について

一道路騒音予測手法の研究 第二報一

高 山 原 孝 小 林 芳 雄 末 岡 伸 一

1 はじめに
市街地での道路条件および交通条件で適用しうる
道路交通騒音予測手法を検討するために、昭和55年度よ
り段階的に調査研究をすすめているが、昭和55～56年
度では市街地道路における定常交通流騒音について調
査を行ってきた。56年度に実施した二車線定常交通流
調査については既に第1報として報告済であるが、56
年度の4車線以上の定常交通流部分を行った調査結
果を第2報として報告する。

2 研究概要
市街地における一般道路の交通流を定常な部分と非
定常な部分とに分けて、56～56年度は上述の加く定常交
通流について調査を実施し、57～58年度は定常交通流
について調査をすすめている。次に沿道建物等の後
背地への騒音伝播については、主として騒音特性実験
を用いて研究を進めていき市街地道路における道路騒
音予測手法の検討を計画している。さて、沿道における
定常交通流騒音の予測方法は次のように大別で
きる。
① 理論モデルによる方法。
② 実験式による方法。
③ シミュレーションによる方法。

本研究では、①の中の等パワーエ等間隔モデルを基礎
とした音響学的な統計式（以下音響学統計式と呼ぶ）と、
③の中のモンテカルロ法によって類似
交通流をつくりそれから発生する騒音を求める電算機
シミュレーションの方法を有効な予測方法と考え、そ
れに必要なデータを収集し、音響学統計式の適合性の検
討と、シミュレーションのためのデータ整理をすすめ
てきた。しかし57年度よりすすめる非定常交通流の騒
音予測では、理論モデルによる方法に幕があり、むし
ろ②の実験式による方法がより実用的と思われるので、
今後の予測方法では、①②を静的予測方法、③を動的
予測方法と呼び、2方式の予測を行えるようなデータ
の収集を考えていく所存である。

3 調査方法
(1) 調査項目
沿道における定常交通流騒音の予測に必要なデータ
としては次のような項目があげられる。
① 交通量。
② 車種混雑比。
③ 平均速度。
④ 速度の統計分布。
⑤ 平均車種間隔。
⑥ 車種間隔の統計分布。
⑦ 道路よりの距離別騒音レベル。
⑧ 道路別パワーレベルの平均。
⑨ パワーレベルの統計分布。

前年度の二車線調査では⑧⑨の項目についてのデー
タ収集は可能であったが、4車線以上の調査では⑧⑨は
大型車のみ観測を行った。

(2) 測定地点
定常交通流測定地点は、信号区間ができるだけ長く、
車がスムーズに走行している地点が必要であり、しか
も基礎データとするため、道路両側が平坦開放地でな
ければならない。このような道路地点を選定した結果
表1にみられるように郊外の幹線道路が主な測定場所
となった。

(3) 交通流調査方法
前年度と同様にデータ数が多く、解析処理が雑多と
なるため、電算処理を行うこととし測定データは直接
コンピュータへ入力できるように信号化してデータレ
コードに収録した。図1は測定方策を示す。今回の測

東京都公害研究所年報1983
表1 調査場所一覧

<table>
<thead>
<tr>
<th>道路名</th>
<th>場所</th>
<th>調査日</th>
</tr>
</thead>
<tbody>
<tr>
<td>水戸街道</td>
<td>松戸市小山</td>
<td>56.10.21</td>
</tr>
<tr>
<td>環状7号</td>
<td>秋田市針水部</td>
<td>76.10.27</td>
</tr>
<tr>
<td>日光道東</td>
<td>花園市新善町</td>
<td>10.28</td>
</tr>
<tr>
<td>川越街道</td>
<td>茨木市</td>
<td>11.5</td>
</tr>
<tr>
<td>新宿梅街道</td>
<td>小浜市</td>
<td>11.10</td>
</tr>
<tr>
<td>甲州街道</td>
<td>豊田市西町</td>
<td>11.12</td>
</tr>
<tr>
<td>環状8号</td>
<td>世田谷区船橋</td>
<td>11.17</td>
</tr>
<tr>
<td>国道16号</td>
<td>川越市大仙</td>
<td>11.19</td>
</tr>
<tr>
<td>新緑7号</td>
<td>江戸川区荏原</td>
<td>11.24</td>
</tr>
<tr>
<td>豊島街道</td>
<td>江東区有明</td>
<td>11.30</td>
</tr>
<tr>
<td>護道連り</td>
<td>三鷹市大沢</td>
<td>12.2</td>
</tr>
<tr>
<td>オリンピック道路</td>
<td>和光市</td>
<td>12.8</td>
</tr>
<tr>
<td>所沢・都和線</td>
<td>埼玉県三芳町</td>
<td>12.10</td>
</tr>
<tr>
<td>中央高速道路</td>
<td>石原市石川町</td>
<td>12.14</td>
</tr>
<tr>
<td>国道246号</td>
<td>横浜市狭山</td>
<td>57.2.16</td>
</tr>
<tr>
<td>国道17号</td>
<td>横浜市狭山</td>
<td>2.23</td>
</tr>
</tbody>
</table>

※6車線道路

図1 交通流および騒音測定方法

村庄信号はコンピュータ出力装置（PI0）へ接続するが、PI0での信号ビックアップ方法は、同年度と同様にサンプリングタイムを100msecとし、1ペルスを2回ビックアップした場合は最初のものを採用ようにプログラミングした。図2は7チャンネルの信号のサンプリングの状況を示す略図である。また各車線を通過する車のパルス信号を同時に、道路の手前第1車線と第2車線の分離帯から垂直方向に距離別に騒音レベルを測定収録している。車速の測定については、この押ボタン測定の前に、あらかじめ車線の特定区間内を通過し任意の車について経過時間を測定し、数十台の観測から平均車速を導いた。今回調査した道路では、車の流れはいずれも一様で流れており、しかも一様の中で速度が多少バラツいているという状況にあり、市街道路における車の流れは信号機の強い影響を受けておりが観測された。これらのことから測定項目の選択は次のように行った。

① 車種別合計と交通量については発生パルスの識別と総計を行い算出する。
② 平均速度および速度分布は、別途の測定により積算する。
③ 平均車頭距離及び車頭時間分布は、前方車のパルスと対象車のパルスの時間間隔と、①の平均速度から導く。
④ 大型車のパワーレベルは、手前車線を通過する大型車を対象とし、対象車の騒音レベルに寄与し

東京都公害研究所年報1983
### 表2 調査結果

<table>
<thead>
<tr>
<th>グループ</th>
<th>平均速度</th>
<th>交通量</th>
<th>交通量レベル</th>
<th>D(A)</th>
<th>平均車両間隔</th>
<th>隣接車両間隔</th>
<th>D(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>2.5</td>
<td>2.2</td>
<td>2.6</td>
<td>3.2</td>
<td>2.7</td>
<td>3.5</td>
<td>2.3</td>
</tr>
<tr>
<td>105</td>
<td>2.5</td>
<td>2.4</td>
<td>2.7</td>
<td>3.4</td>
<td>2.7</td>
<td>3.5</td>
<td>2.3</td>
</tr>
<tr>
<td>106</td>
<td>2.5</td>
<td>2.6</td>
<td>2.8</td>
<td>3.6</td>
<td>2.7</td>
<td>3.5</td>
<td>2.3</td>
</tr>
</tbody>
</table>

### 表3 車両間隔（100m以下）

<table>
<thead>
<tr>
<th>(％)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

東京都公論研究所図報1983
ない場合（10dB（A）以下）を除き、発生パルス直後の騒音レベルより算出する。

（4）測定時間

測定時間は10時～15時の範囲で実施し、原則として昼休みの時間帯（12時～13時）を除いた。1回の測定時間は、コンピュータディスプレイの容量に制限されるため20分間と定めた。また1地点における測定回数は、交通の流れの良好な状況を迎えても2回行った。

（5）騒音測定及び処理方法

騒音測定は図1にみられる如く道路両側が開放地域となっている地点を選定し、道路片側に垂直方向に精密騒音計を10m、20m、40mの3点に配置し、その平坦特性を有するチャングルデータレコーダに収録し、再生時に騒音レベル（A特性）化してPIOへ送る方法をとった。PIOでのサンプリングは100msec間隔で20分間行い、L<sub>10</sub>、L<sub>T</sub>、L<sub>eq</sub>を算出した。

4 調査結果

対象道路の車線数は四車線以上としたが、調査した道路では一部六車線の外、四車線がほとんどであった。

調査地点および調査日を表1に示し、調査地点毎の平均速度、交通量、騒音レベル、平均車両間隔についての結果を表2に示す。

（1）交通量

交通量は車線別に、大型車類（ブルート番号1、2、9）小型車類（小型貨物車類、乗用車類）の2分類とし、1回の計測時間は20分間である。調査地点でみられた交通量は、40～1399台/20分間の範囲にあり、その頻度は700～800台/20分間であった。大型車の混入率については5～45%の範囲にあり、その最頻値は20～30%であった。今回の調査では1地点2回の計測を行ったが、その累計値は2回ともほぼ同様な傾向にあった。

（2）騒音

対象道路の手前車線及び車線の境界線から10m、20m、40mの距離をとり、この3地点の測定から、それぞれL<sub>10</sub>、L<sub>T</sub>、L<sub>eq</sub>を算出した。今回の測定では、前年度の二車線道路では交通量が多いためにL<sub>eq</sub>のレベルは、やや高く全測定地点の10m点の平均L<sub>eq</sub>は、71dB(A)であり、スムーズに流れられる幹線道路沿道ではこの程度の状況にあると思われる。また20m点、40m点の全平均L<sub>eq</sub>はそれぞれ65dB(A)、60dB(A)であった。次に代表的な評価値と思われるL<sub>10</sub>、L<sub>T</sub>、L<sub>eq</sub>について、相互の関係をもつものが図3である。この結果L<sub>10</sub>とL<sub>T</sub>、L<sub>eq</sub>ともに良い相関を有しており、相関係数はそれぞれ0.965、0.993であった。ここでは、L<sub>T</sub>とL<sub>eq</sub>の関係を図示すると図3と同様な結果になり良い相関が得られた。また前年度の二車線道路についても同じ結果がでているのでこの程度の交通量の差では良い相関関係は崩れないことか、交通量の比較的多い固定交通量での評価値としては、三者がいずれも良いと思われる。しかし交通量の少ない車道では相関が悪いという報告がある。

次に各道路の10m、20m、40mにおける騒音の距離減衰についてみてみたものが図4である。傾斜としてこの傾斜までの距離では偏差距離6dBの減衰となっている。このことは嘯音レベルの傾向を示しているが、考えられること。
図4 L50の距離減衰

これは大型車の騒音レベルの強い影響を受けることから支配的影響源によって距離減衰が形成されていると推定される。

（3）速度

速度の計測は40m程度の道路区間を設定し、ストップウォッチにより計測した。この測定結果を基に、速度5km/hごとのステップに分類し、その出現回数を整理して出現比率として、図5に示した。結果をみると、出現速度は10〜80km/hの広い分布となっているが、40〜60km/hの範囲において70%以上が入っている。最頻速度は51〜56km/h、次いで56〜60km/hとなっている。測定速度と関係性が見られる。これらの速度の全平均は52.4km/hであり、標準差は11.1km/hであった。道路を走行する自動車の速度分布は、正規分布を仮定するといわれている。

そこで今回も前年度と同じく図5の分布について正規分布かどうかの適合性をみるためにカイ2乗検定により判定した。この結果、カイ2乗の検定値は5.30、自由度5の5%カイ2乗分布値は11.07となるので、図の速度分布は5%有意水準で正規分布をしているといえる。

（4）車頭間隔

車頭間隔は図1にみられるようにデータレコーダに収録された前方車（先行パルス）と対象車（対象パルス）の時間間隔から、当該道路であるかじめ計測された平均車速から算出する。従って、交通量と見合いの相関のデータが得られるが、この全数を50mステップの頻度に分類し、100分母として示したものが図6である。この結果をみると、車頭間隔が50m以下のものが約58%を占め、次いで51〜100mが約30%となり、それ以後は順次比率が低下して行くいわゆる指数

図6 車頭間隔の分布

図7 車頭間隔の分布 (100m以下)
分布を形成している。ここで、100 m 以下が40%近くを占めているので更に詳しくみるために、5 m ステップで分類し、100 分単位で示されたものが表 3、図 7 である。ここでの最頻率両側間隔は 21～25 m の 10.1%、次いで 16～20 m の 8.8%である。図からみられるように、指数分布とと思われるので、対数正規分布曲線を当てはめてみるために、平均値 \( \mu \)、標準偏差 \( \sigma \) を推定し、次式より求めてみたものが図 7 の曲線（実線）である。極めて良い一致を示している。

対数正規分布 \( g(x) = \frac{1}{\sqrt{2\pi} \sigma} \cdot \frac{1}{x} \cdot \exp \left( -\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \) \[ \mu = 3.54 \quad \sigma = 0.51 \]

(6) 大型車のパワーレベル

車からの発生音を無指向性の点音源とみなして一定距離で計測された騒音レベルから車のみかけのパワーレベル（ここではパワーレベルと呼ぶ）を求めた。定常走行時の個々の車のパワーレベルを測定することを実地道路では困難である。特に車種数が多い対象車以外の車の影響を受け易いので厳密な測定は難しい。

そこで音源に近接し、しかも対象音源のレベルが高い場合のパワーレベルをより多くと10 dB 以上の差があるような場合はパワーレベルに近似した値が得られると考えて、今回は大型車のみのパワーレベルを測定した。測定方法は、第 1 車線を通過する大型車類のみを対象とし、対象車が測点正面を通過する前後 3 秒間は、すべての車線に大型車が存在しない場合のみそのレベルを抽出した。結果は図 8 に示すとおりである。ここで得られたパワーレベルは、測定道路によって平均車速が異なることと 60 km/h に統一するため、速度補正（0.2 v）を行っている。パワーレベル全体の平均は、106.5 dB（A）であり、標準偏差は 3.86 dB（A）であった。図から正規分布に似ていると思われるが、一般にパワーレベルの分布は正規分布になるといわれているので、図の正規分布の適合性についてカイ 2 検定により判定すると、カイ 2 検定の有意確率は 1.76、自由度 8 の 5%カイ 2 検定は 15.5 となるので、測定した大型車のパワーレベル分布は 5% の有意水準で正規分布であるといえるよう。

(6) 音響学会式と実測値との比較

本調査の目的の一つは、市街地道路への音響学会式の適合性を検討することである。このため音響学会式による計算値と、実測値の比較が容易に行えるように自動車走行がスムーズな場所でかつ開放平坦地を選定して測定を行った。計算を行うにあたり、測定データを車種別に交通量、車種混合比、平均車両間隔に整理し方向別に単一的音源ライン（四車線の場合、1、2 車線の境界線、3、4 車線の境界線）としてまとめ受音点との距離を定めた。補正値 CIi については、道路構
造は平坦、受音点高さは1.2mとし、距離別に表単位を適用した。実測点は一部測定不可能だった地点を除き76地点となった。76地点における実測値と計算値の関係を図9に示す。これ結果をみると、±5dB以内に96%が入っており、数地点が±5dBラインからはみ出している。この図からみられるように、道路に近い距離では実測値は計算値に較べて高いレベルとなり、遠い距離では実測値は低めのレベルとなっている。また20m地点では同者がかなり良い一致を示していることがわかる。このような結果についての若干の考察を行うと、
道路に近い距離では、
① 仮定された手前側音源ラインと受音点の位置関係が定め難しい。
② 近接しているため音源の指向性や点音源として一様ではない。
③ 路面反射等が考えられる。
道路から離れると、
① 点音源とみなし得るような距離となり安定するが、広く散在する反射物等の影響が見出されない。
② 草木、木だらけ等の物による遮蔽等の遮蔽等が考えられる。
従ってこのような市街地道路の場合上述の諸点を考慮して±1dB補正是値である程度再補正すれば実測値と計算値の差を更に縮めることができるようになる。
次に、図9の結果を実測値と計算値の差と頻度との関係を示したもののが図10である。実測値と計算値の差が±2dBに入るものも全体の64%，±1dBに入るもの36%となってしまって予測の確率としては良好と思われるが、更に精度を向上させるためには、上述のような補正値についての若干の再補正が必要と思われる。
（7）前年度調査（55年度）と本調査（56年度）との比較
表4は55年度二車線道路調査時と56年度四車線道路調査時の各調査項目の概要の比較である。二車線道路の調査地点は、交通量が比較的に多い郊外道路が多く、56年度四車線道路の調査地点は郊外ではなくあるが、幹線道路沿道で実施したものである。従って交通量もかなり差があるので、調査項目内容の調査項目内容の多少差異が出てくるものと考えられが、大方の傾向は一致していた。即ち騒音評価値相互の相関関係が良いこと、また速度の分布が正規分布であること、車両間隔が指数分布であること、大音量のパワーレベルはほとんど同一であり、パワーレベルが正規分布していること等、調査条件が異なっても、このような傾向が変わらないことがわかった。従って市街地における定常交通流はこれら項目にみられるような統計分布的性質があり、それらの平均値μや標準偏差σを特定することによって、コンピュータシミュレーションによる確度の高い予測が可能と考えられる。
まとめ
55〜56年度の2年度にわたり市街地における定常交通流道路（以下道路という）騒音調査を行ったが、こ
(4) 大型車パワーレベル
問題となる大型車のパワーレベルの分布は正規分布を形成しており速度60km/h にまとめると，\( \mu = 106 \) ～ 107 dB (A) \( \sigma = 3.9 \) となった。

(5) 音響学会式と実測値の関係
両者の差でみると士5 dB (A)以内に96％が入っており，士2.5 dB (A)では60％以上が入っていた。市街地の事情から補正値\( \alpha \)に若干の補正を加えると，更に相關が向上し，道路騒音予測に適用可能と考えられる。

6 おわりに
東京都の市街地道路の交通事情は年々悪化の傾向になり，基本となる定常交通流騒音の実態を調査するためにの場所（信号間隔が長く，交通流動が少なく且つ開放平坦）を含む困難であった。結果，東京から放射状に伸びる名駅線道路での測定は，騒音等内において結果となった。

これら的事情から沿道の騒音の予測には，定常非定常交通流の部分のみなく，交通の実態や，高架，橋梁，沿道建物等の騒音影響実態等多くの調査が必要であることを痛感している。騒音値であるパワーレベルについてもこれから先騒音低減観念が進むにつれてパワーレベルの統計分布の平均値や標準偏差が多少変化して行くと考えられるので，その団地市街地道路での実態把握が必要である。以上，調査すべき観点が多いが，基本となる市街地定常交通流の実態については，その概要を把握できたと考えている。57年度からは沿道における非定常交通流について調査研究をすすめていく所存である。

参考文献
1）日本音響学会：道路交通騒音の予測計算方法に関する研究報告（1975）。
2）建設省：自動車交通騒音の予測計算方法。
3）福田治郎：応用統計学入門，日刊工業新聞社。

東京都立公害研究所年報1983