河川の浄化に関する研究（そのX）

—生活排水中の懸濁物質成分と処理効果等について—

佐々木 徹 および 井上 夏川 原浩

1 は じ め に

多摩川の中流部の水質改善対策の研究の一環として、本川の懸濁物質の浄化効果に関する検討をあわせて、主要汚染源からの有機性汚穂物質および同関連物質について抽出実験を調査したところ、河川水と排水の水質が懸濁物質濃度によって影響を受けることが判った。

このため、燃料ガスの排出水を用いて、その懸濁物質の粒径8μm以下の懸濁物質の組成と水質との関係について検討を行ったが、懸濁物質の90%以上が粒径8μm以上で占められ、8μm未満の粒径については、粒径別間の組成と水質との関係を認め難かった。

このため、本報告では、懸濁物質粒径8μm以上についても組成と水質との関係を検討した。

また、排出成分は、活性汚穂処理等の生物処理によって除去されにくい傾向があるので、 août気実験を行ってその変化を検討した。

2 方 法

(1) 試料

試料は下記のし尿浄化槽排水の流入水・沈殿槽越流水を用いた。更に、A浄化槽には縫集沈殿・砂ご過、B浄化槽には生物ご過の各施設が三次施設として設置されており、それぞれの処理水も試料とした。

排水は、流入水の水質変動を考慮して汚穂程度の高い朝の時間帯に採取することとした。

なお、A～C浄化槽の生物学的処理法に対し、縫集沈殿・砂ご過・活性炭酸化の化学的処理法によって合併処理しているD浄化槽についても調査した。

A浄化槽 B浄化槽 C浄化槽 D浄化槽
処理人員：5,400人 12,000人 4,100人 3,300人
排水量：1,700m³/日 2,000m³/日 800m³/日 380m³/日
処理方式：標準活性 標準活性 長時間ば 化学処理
汚泥法 汚泥法 う気法 法

(2) 分析項目と分析方法

分析項目と分析方法は、BOD・COD・全有機炭素（TOC）・蒸発残留物については、JISK0102により、全窒素（T-N）は、ケルダール体窒素・アンモニア体窒素・亜硝酸体窒素・硝酸体窒素を求める、それらの合計とした。全リン（T-P）は、浮田正夫他によるモリブデンブルー法により過硫酸カリ分解放した後のリン酸体リノンを測定し、分解しない場合のリン酸体リノンを差引いて求めた。

(3) 懸濁物質の別法

排水中の懸濁物質は、まず真縫製ブロイにより、各々孔径1,000μm（16メッシ）、以下同じ）、50μm（32）、25μm（60）、10μm（149）、63μm（250）、20μm（635）にふるい分け、更に1.2μmのワットマン製ガラス繊維ろ紙および0.45μmのミリポア製メンプランろ紙を用いて別しそのろ液を分析した。

また、ろ別した懸濁物質重量は定容量が一様だったため、それぞれ孔径上位のろ液の蒸発残留物との差として求めた。更に、未ろ過水の懸濁物質重量は未ろ過水の蒸発残留物から0.45μmろ液を溶解性成分とみなして、その蒸発残留物を差引いて求めた。

(4) ばっ気実験の方法

実験装置は、縫36.4cm、横117cm、深さ37cmの水槽を用い、B浄化槽の表1に示す流入水と返送汚泥（MLSS3200mg/l）をほぼ2：1で混合してMLSSを2,000mg/lとし、エアコンプレッサーによりばっ気を行った。実験開始時の流速は158m/日であった。

開始直後、30分後、以後1時間間隔で8時間後まで2ずつ採取し、孔径20μmの真縫製ブロイでろ過し、

東京都公害研究所年報1983
表1 実験に用いた試料の分析結果

<table>
<thead>
<tr>
<th>分析項目</th>
<th>流入水</th>
<th>返送泥</th>
<th>返送泥</th>
</tr>
</thead>
<tbody>
<tr>
<td>オキシダ</td>
<td>未ろ過</td>
<td>20μmろ過</td>
<td>20μmろ過</td>
</tr>
<tr>
<td>BOD</td>
<td>200</td>
<td>130</td>
<td>17</td>
</tr>
<tr>
<td>COD</td>
<td>120</td>
<td>78</td>
<td>14</td>
</tr>
<tr>
<td>TOC</td>
<td>150</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>T-N</td>
<td>51.2</td>
<td>48.4</td>
<td>13.3</td>
</tr>
<tr>
<td>T-P</td>
<td>7.53</td>
<td>6.49</td>
<td>3.3</td>
</tr>
<tr>
<td>蒸発残留物</td>
<td>510</td>
<td>390</td>
<td>250</td>
</tr>
</tbody>
</table>

直ちにろ過液を分析した。試料の採取にあわせて、水温・pH・溶存酸素・SV50・送気量を測定した。

3 結果

(1) 分析結果

A～D浄化槽における流入水・沈殿槽越流水およびこれらの懸濁物質の粒径別水質分析結果を表2～1～4に示す。

活性汚泥法により処理を行っているA～C浄化槽はいずれも管理状況が良好であり、その沈殿槽越流水の未ろ過水についてみると、BODは1～11mg/L（除去率93～99%、以下同じ）、CODは7～20mg/L（78～89%）、TOCは7～9.6mg/L（91～93%）、T-Nは4.96～14.2mg/L（58～77%）、T-Pでは0.96～3.06mg/L（42～80%）であった。

ア 懸濁物質の組成

流入水の懸濁物質の組成は、図1のとおりであり、いずれの浄化槽も、ほぼ似たような組成を示していた。

沈殿槽越流水の懸濁物質組成は、粒径1,000～105μmまではフライの孔径を通過してしまい捕集されなかった。

また、蒸発残留物についてみると、粒径105μm未満の懸濁物質組成は、A～C浄化槽とも大きな差はみられなかった。

イ 粒径構成と水質

活性汚泥法によるA～C浄化槽の流入水について、懸濁物質を粒径別に分類し、各粒径のBOD等懸濁物質との残留率を図2～1～5に示す。

BOD・TOCは、図2～1、図2～3にみるとおり、粒径105μmまでは、ほぼ横ばい状態で減少するが、粒径20μm以上の懸濁物質を除去すると、本質は50%以上となった。

一方、T-N・T-Pについては、図2～4～5にみるとおり、粒径63μmまではほとんど変化なく、粒径1.2μm以上を除去しても、なお59%以上が残存していた。

図1 流入水中の懸濁物質組成

した。

沈殿槽越流水についてみると、BODではA浄化槽を除き粒径63μm以上を除去することにより、未ろ過水より55%に水質が良くなったが、COD・TOC・T-N・T-Pについては、懸濁物質を除去しても水質には大きな差はなかった。これは、溶存成分に起因するものと考えられる。

(3) ばら気実験の結果

前述のとおり、流入水中の懸濁物質のうち、粒径20μm以上の懸濁物質を除去することにより、BOD・TOCは50%以上が除去できた。しかし、溶存成分については、生物酸化槽内における浄化効果が十分に知れていない。そこで、溶存成分の瞬時変化を把握するためにばら気実験を行った結果を図3に示す。

粒径組成の結果から、本実験では、孔径20μmろ過成分を溶存成分とみなして水質を検討したが、図3にみるとおり、流入水と返送汚泥を混合した直後では、BOD・COD・TOC・T-N・T-Pは、それぞれ59mg/L
表 2-1 A浄化槽水質分析結果

<table>
<thead>
<tr>
<th>分析項目</th>
<th>液</th>
<th>入</th>
<th>水</th>
<th>床面積総駆出水</th>
<th>残留</th>
<th>原泥濃度</th>
<th>残留濃度</th>
<th>水相処理水</th>
<th>水相濃度</th>
<th>残留水相濃度</th>
<th>原泥濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>120</td>
<td>110</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>15</td>
<td><25</td>
<td>2.7</td>
</tr>
<tr>
<td>COD</td>
<td>53</td>
<td>53</td>
<td>52</td>
<td>52</td>
<td>43</td>
<td>42</td>
<td>43</td>
<td>43</td>
<td>18</td>
<td>6</td>
<td>6.9</td>
</tr>
<tr>
<td>TOC</td>
<td>120</td>
<td>110</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>15</td>
<td><25</td>
<td>2.7</td>
</tr>
<tr>
<td>T-N</td>
<td>22.8</td>
<td>22.6</td>
<td>21.8</td>
<td>21.8</td>
<td>20.6</td>
<td>19.8</td>
<td>19.8</td>
<td>18.5</td>
<td>11.7</td>
<td>18.4</td>
<td>6.7</td>
</tr>
<tr>
<td>T-P</td>
<td>3.92</td>
<td>3.92</td>
<td>3.90</td>
<td>3.90</td>
<td>3.95</td>
<td>3.95</td>
<td>3.95</td>
<td>3.92</td>
<td>2.24</td>
<td>3.95</td>
<td>3.95</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
表 2-2 B浄化槽水質分析結果

<table>
<thead>
<tr>
<th>分析項目</th>
<th>液</th>
<th>入</th>
<th>水</th>
<th>床面積総駆出水</th>
<th>残留</th>
<th>原泥濃度</th>
<th>残留濃度</th>
<th>水相処理水</th>
<th>水相濃度</th>
<th>残留水相濃度</th>
<th>原泥濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>220</td>
</tr>
<tr>
<td>COD</td>
<td>220</td>
</tr>
<tr>
<td>TOC</td>
<td>220</td>
</tr>
<tr>
<td>T-N</td>
<td>22.2</td>
</tr>
<tr>
<td>T-P</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
表 2-3 C浄化槽水質分析結果

<table>
<thead>
<tr>
<th>分析項目</th>
<th>液</th>
<th>入</th>
<th>水</th>
<th>床面積総駆出水</th>
<th>残留</th>
<th>原泥濃度</th>
<th>残留濃度</th>
<th>水相処理水</th>
<th>水相濃度</th>
<th>残留水相濃度</th>
<th>原泥濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>220</td>
</tr>
<tr>
<td>COD</td>
<td>220</td>
</tr>
<tr>
<td>TOC</td>
<td>220</td>
</tr>
<tr>
<td>T-N</td>
<td>22.2</td>
</tr>
<tr>
<td>T-P</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
表 2-4 D浄化槽水質分析結果

<table>
<thead>
<tr>
<th>分析項目</th>
<th>液</th>
<th>入</th>
<th>水</th>
<th>床面積総駆出水</th>
<th>残留</th>
<th>原泥濃度</th>
<th>残留濃度</th>
<th>水相処理水</th>
<th>水相濃度</th>
<th>残留水相濃度</th>
<th>原泥濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>220</td>
</tr>
<tr>
<td>COD</td>
<td>220</td>
</tr>
<tr>
<td>TOC</td>
<td>220</td>
</tr>
<tr>
<td>T-N</td>
<td>22.2</td>
</tr>
<tr>
<td>T-P</td>
<td>22.2</td>
</tr>
</tbody>
</table>

東京都公害研究所年報1983
図2-1 ～ 5 懸濁物質粒径別の水質残存率

図3 溶存成分の経時変化

東京都公告研究所年報1983
・44mg/L・50mg/L・38.9mg/L・6.65mg/Lとなっ
た。これは、反送汚泥により希釈されたものと考え
られ、押し流し式の実処理施設のばら気槽においても、
流入水と反送汚泥が合流する流入部付近のBODが13
mg/L（流入水は120mg/L、以下同じ）、CODは
13mg/L（81mg/L）、TOC14mg/L（110mg/L）、
T-N45.7mg/L（15.7mg/L）、T-P5.98mg/L
（3.6mg/L）であることからも希釈によるものであ
ると考えられる。

残存率についてみると、3時間後のBOD73％
COD・TOCは60％程度となり、その後はあまり減少
していない傾向がみられた。T-N・T-Pについて
は、7時間後で70％以上が残存しており、実処理施
設における平均的な窒素・リンの除去率と大差はなかっ
た。なお、実験中の水温は16.5～17.5℃、pHは6.7
～7.4、懸濁汚泥は1.6～3.4mg/L、SV50は16～22
％、送気量7.6L/分であった。

(4) 化学処理法における懸濁汚泥除去と水質

化学処理法における処理のフローシートは、まず流
量調整槽を経て蒸留液調製槽に流入するが、ここで
蒸留液として硫酸パラド（濃度50mg/L、以下同じ）
と高分子凝集剤（0.5mg/L）が注入される。次いで、
急速砂ろ過塔よりろ過を行い、そのあと活性炭吸着
処理をして汚泥が放出している。なお、活性炭吸着塩
内部の微生物繁殖を抑制するため、砂ろ過処理後硝酸
ナトリウム（10mg/L）を添加している。

懸濁汚泥除去と水質との関係は、表2～4にみると
おり、蒸留液調製処理後では、BODは28mg/L（除去率
85％、以下同じ）、COD20mg/L（78％）、TOC26
mg/L（78％）、T-N35.1mg/L（32％）、T-Pでは
0.39mg/L（94％）となり、懸濁汚泥を主体にした処
理であったが、その水質はかなり良好となっている。特
にT-Pについても、生物処理にはみられない除去率
を示していた。

急速砂ろ過処理では、BODが19mg/L（90％）、C
OD15mg/L（82％）、TOC15mg/L（87％）、T-N
32.3mg/L（37％）、T-Pでは0.25mg/L（96％)で
あった。

更に、活性炭吸着処理では、BOD3mg/L、COD
9mg/L、TOC8.9mg/L、T-N27.9mg/L、T-
Pは0.2mg/Lとなり、T-N濃度は硝酸ナトリウム
の添加により高い値を示したものの、懸濁汚泥の除去
を中心とした処理方法であっても、従来の生物処理と
同等かあるいはそれ以上の処理効果をあげている好例で
ある。

流入水の懸濁汚泥組成は、図1のとおりであり、A
〜C浄化槽と比較しても大きな差はみられなかった。

沈殿スゲン機変流では、懸濁汚泥量は22mg/Lと少
なく、粒径63μm以下の各粒径間の差もほとんどみら
れなかった。

懸濁汚泥の粒径と懸濁汚泥粒径との関係は、流入
水では図2・2～4にみるとおり、COD・TOC・T-
Pでは粒径1.2μm以上の懸濁汚泥を除去することに
より残存率は50％以下となりが、T-Nでは、孔径0.45μm
のろ液でも、なお75％が残存していた。

沈殿スゲン機変流では、粒径20μm以上の懸濁汚泥
を除去しても、COD・TOC・T-Pとも87％以上が残
存していた。

4まとめ

(1) 活性汚泥法によるし尿処理槽排泥について、懸
濁汚泥の粒径別組成と水質について検討した結果,
いいずれの浄化槽の流入水についても、ほぼ似た懸
濁汚泥組成であった。

(2) 管理状況のよい沈殿槽変流流では、粒径105μm以
上の懸濁汚泥は除去されていた。粒径105μm未満0.45
μmまでの懸濁汚泥については、あまり組成に差がみら
れなかった。

(3) 懸濁汚泥の粒径と水質との関係では、流入水につ
いては、BOD・TOCでは粒径20μm以上の懸濁汚泥
を除くことにより50％以上が除去できるが、窒素
・リンについては粒径1.2μm以上を除くしても残
存率は59％以上であった。

(4) 沈殿スゲン機変流の懸濁汚泥組成は、BODについて
はA浄化槽を除き、粒径63μm以上を除くことによ
って残存率は45％となったが、COD・TOC・T-N
・T-Pでは、懸濁汚泥を除いても水質にあまり差が
みられなかった。

(2) 活性汚泥法における溶解成分の瞬間変化につい
て実測を行った結果

(1) 流入水と返送汚泥が混合されると、まず低濃度の
返送汚泥によって希釈され(希釈率は返送汚泥比によ
り異なる）、次いで活性炭泥より吸着・酸化が進行するものと考えられる。
② 3時間程度のばっ気でBOD・COD・TOC濃度は低下するが、その後ばっ気時間が長くなってもあまり減少しない。

(3) 化学処理法による生浄化槽排水については、
① 汚集沈殿処理後の除去率は、BOD・COD・TOCは、それぞれ85％・78％・78％であり、活性炭吸着処理後の放流水では、BOD・COD・TOCは399/μL・999/μL・8.99/μLとなり、生物処理と同等かそれ以上の良好な結果であった。
② 流入水の懸濁物質組成および懸濁物質の粒径と水質については、生物処理法の生浄化槽とほぼ同様であった。

以上、実験調査および合併式生浄化槽排水を用いて、懸濁物質の除去とその水質について検討した結果、流入水中の懸濁物質が水質に大きな影響を及ぼしており、懸濁物質を除去することにより水質はかなりの程度に改善できることが判った。このことは、懸濁沈殿処理を主体とした化学処理法によって実際に処理を行っている処理施設の調査結果からも実証できた。
また、ばっ気実験および実施施設の調査結果からばっ気槽内では、流入水中のBOD・TOC濃度はごく短時間で50％以上が減少するが、その後はあまり減少していない傾向がみられた。