騒音の精神衛生に及ぼす影響 - 第2報 -
—— 睡眠時の覚醒刺激と記憶について、脳波等電位図法トポグラフィを用いて——

１はじめに

近年、都市の過密化がより高度となるに連れて都市騒音の中でも近隣騒音、いわゆる生活騒音が都市居住者の精神衛生に与える影響が大きな問題になっている。この生活騒音についてはいくつかの報告があるが、いずれの報告でも、この音が比較的音圧レベルが低いことを挙げ音圧レベルを法的に規制するだけでは解決が難しいことを指摘している。近隣騒音の被害者は時間帯としては深夜早朝で睡眠妨害の問題が最も大きいことは言うまでもない。

睡眠研究の分野では、音刺激負荷によって睡眠構造の変化を調べた報告はいくつかあるが、何れも個体差がかなりあることを指摘している。またその差が音の物理量によるものか、音のもつ意味や依って異なるのかについては定説をみていない。また騒音妨害の問題は直接的に睡眠を妨げる以外に、もう一方で昼間の生活という点と、また睡眠中の生活という点と、この2つの問題が含まれている。

我々は睡眠を妨害すると考えられている40dbのレベルを中心に音圧と感情刺激の量が交差する音を刺激としてもらい、安定した睡眠段階といわれる中等度睡眠の段階で音刺激を加えた。また刺激による睡眠段階の変化と脳波変化の定量化の解析を行なった。また刺激実験の後で、刺激に用いた音について簡便な質問調査を行い、その記憶の良し悪しを評価して興味ある結果を得たので報告する。

２実験の方法

(i) 対象

被験者はいずれも25から30才の健康正人で男子4名、女子1名の計5名である。いずれも聴力障害や睡眠障害を持たない都市住民で健常な社会生活を送っている大学卒業以上の高学歴者である。

(ii) 覚醒刺激の設定について

覚醒刺激の刺激音の種類は表1に示すように4種を選んだ。

表1 覚醒刺激の種類

<table>
<thead>
<tr>
<th>参考文献</th>
<th>その他の文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Noise: ブロック発振器を用いて1000Hzのビーグを持つ発振音を約60秒間</td>
<td>② Music: 交響曲の一部を約60秒間</td>
</tr>
<tr>
<td>③ Haiku: 「東京いねんねんこおり言いかがる」という俳句の繰り返し約60秒間</td>
<td>④ Crying:「起きて、助けて」という繰り返し約60秒間</td>
</tr>
</tbody>
</table>

東京都環境科学研究所年報1987
図1 刺激音の周波数分布図と平均音圧

MONTAGE

<table>
<thead>
<tr>
<th>No. of Channel</th>
<th>No. of Electrode Position</th>
<th>No. of Electrode Position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(G1) (G2)</td>
<td>(G1) (G2)</td>
</tr>
<tr>
<td>1</td>
<td>1-L+R</td>
<td>Fp1-L+R</td>
</tr>
<tr>
<td>2</td>
<td>2-L+R</td>
<td>Fp2-L+R</td>
</tr>
<tr>
<td>3</td>
<td>3-L+R</td>
<td>F3-L+R</td>
</tr>
<tr>
<td>4</td>
<td>4-L+R</td>
<td>F4-L+R</td>
</tr>
<tr>
<td>5</td>
<td>5-L+R</td>
<td>C3-L+R</td>
</tr>
<tr>
<td>6</td>
<td>6-L+R</td>
<td>C4-L+R</td>
</tr>
<tr>
<td>7</td>
<td>7-L+R</td>
<td>P3-L+R</td>
</tr>
<tr>
<td>8</td>
<td>8-L+R</td>
<td>P4-L+R</td>
</tr>
<tr>
<td>9</td>
<td>9-L+R</td>
<td>O1-L+R</td>
</tr>
<tr>
<td>10</td>
<td>10-L+R</td>
<td>O2-L+R</td>
</tr>
<tr>
<td>11</td>
<td>11-L+R</td>
<td>F7-L+R</td>
</tr>
<tr>
<td>12</td>
<td>12-L+R</td>
<td>F8-L+R</td>
</tr>
<tr>
<td>13</td>
<td>13-L+R</td>
<td>T3-L+R</td>
</tr>
<tr>
<td>14</td>
<td>14-L+R</td>
<td>T4-L+R</td>
</tr>
<tr>
<td>15</td>
<td>15-L+R</td>
<td>T5-L+R</td>
</tr>
<tr>
<td>16</td>
<td>16-L+R</td>
<td>T6-L+R</td>
</tr>
<tr>
<td>17</td>
<td>17-L+R</td>
<td>Fz-L+R</td>
</tr>
<tr>
<td>18</td>
<td>18-L+R</td>
<td>Cz-L+R</td>
</tr>
<tr>
<td>19</td>
<td>19-L+R</td>
<td>Pz-L+R</td>
</tr>
<tr>
<td>20</td>
<td>21-L+R</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22-L+R</td>
<td></td>
</tr>
</tbody>
</table>

NA23を被検者の耳の位置に当たる部分に置き、20周波数間隔を設け、各帯域ごとに平均音圧を示すような周波数分布図を得た。また、4つの刺激音について（1（500Hz）+2（1kHz）+1（2kHz））×1/4の式を用いてその平均音圧レベルを算出した。

これらの刺激は図1でも明らかに、刺激の順番が逆に③、②、①の順に平均音圧レベルが高く設定されている。

（5）実験の状況、順序

実験ではこれらの覚醒刺激音を、テープに収録したものを、半音階の2段階のスピーカーを用いて、音を出させた被検者に聞かせた。なお、この音を示した音の音圧は約26から28dB(A)の刺激音があった。

聴覚記録は国際聴覚学会の基準聴音102法に基づいて、Fp1、Fp2、F3、F4、C3、C4、P3、P4、O1、O2、F7、F8、T3、T4、T5、T6、Fz、Cz、Pz、Fp1とFP2の中間点、O1とO2の中間点の21
導者から導出し両耳介を不動電極として単極導出を用い
た（図2）。なお時定数0.3秒，50μVと5mm。記録
紙の速度は毎秒3cmとした。この記録は三栄測器製21
チャンネル万能プログラフ計SANNEI-1A97を用
いて記録すると共にTEAC素21チャンネルデータ
レコーダー-TEAC XR-710を用いて全部を磁気テ
ープに収録した。
実験の順序としては被検者に電極を装着し「眠る中に
いくつかの音を聞かせられるが、どんな音が聞こえたかよく
覚えておくよう」と指示した。そして予防音室内の寝
台に所定の位置に頭部を置くように命じ、脳波記録を開
始して脳波波形をモニターしながら自然に入眠させた。
覚醒刺激は全例についてRechtschaffenとKalesの
基準に基づいて睡眠段階stage 2の段階で行った。刺激
の順序は①，②，③，④の順である。
①の刺激の後で再び自然に入眠しstage 2の段階ま
で進するのを待ち②の刺激を行うというように順次覚醒
刺激を繰り返した。②刺激の後、最後に予防音室内の眠
台で所定の位置に頭部を置くように指示して実験を終了した。覚醒刺激と次の覚醒刺激の間隔は自然
に再入眠して同じ睡眠段階に安定するのを脳波モニター
で確認してから次の刺激を与えるため実験の施行計
時は被検者によって異なり約80分から4時間にわた
っている。
(4) 解析と評価の方法
7 視覚法による睡眠段階の判定
RechtschaffenとKalesの基準では睡眠段階の判
定は20秒以内で30秒間を1エピソードとして判定をと
こなが、ここでは各刺激の開始直後から30秒ごとに
判定基準に基づいて睡眠段階の判定を行った。
イ トポグラフィーによる脳波の定量的解析
磁気テープに収録された21部位の脳波記録から、覚
醒刺激の直前1分間と刺激開始から1分間について日本
電気三栄測器製三極シナリオプロセッサ7181Bにより、
トポグラフィーNo.300システムを用いて解析した。1回
のサンプリングは約6秒で10回加算平均した。
本システムは、導出された脳波を1msecごとにサン
プリングし高速フーリエ変換（FFT）で分析し、0.2Hz
ごとのパワースペクトルを求めるDELTA（2.0-3.8
Hz）、THETA（4.0-7.8Hz）、ALPHA1（8.0-9.8
Hz）、ALPHA2（10.0-12.8Hz）、BETA1（13.0
-19.8Hz）、BETA2（20.0-29.8Hz）の6帯域別
に平均パワーの基準位を求め、その平方根すなわち等価
的電位を計算する。そしてこれを11段階に分け、電極
位置に対応した等電位圏（トポグラフィー）としてサー
マルプリンターに表示するものである。本実験ではハッ
クウソウドウは使用していない。加算は単純平均加算
を用いた。また電極をとりつけていない4格子点につい
ては補間式によって計算した。
また刺激前の等電位圏を基準にして刺激後の電位を
比較して変化率をマッピングした。これには（刺激前
-刺激前）/（刺激前）×100の式を用いている。また
刺激後と完全覚醒の電位においても同様に比較した。
ウ 副刺激音の想起、再生の評価について
実験終了後、被検者が完全に覚醒させた後に眠り中
どんな音が聞こえたかを説明するために指示して答え
をえた。解答については次の3つの段階に分類した。第1に被検者が実際に対して自覚的に起
ることが可能でしかも正確に再生できたもの、これを①
goodと評価した。第2に自覚的に想起したがその内容が不
正確で歪曲されているもの、これを②badと評価した。
最後に被検者が自分で思い出すことが出来ず、ほんとにも
刺激音があったが記憶がないかと注意を喚起されて、な
どかに想起したが、その内容がはっきりしないものであ
る。これを③noneと評価した。
2 結 果
（1）睡眠段階の変化
覚醒刺激はすべて脳波をモニタしながらRechtschaf
fenとKalesの基準で睡眠段階stage 2が続い
て出現しているのを確認してから行った。表2では刺激
開始直後から前の30秒間、後後の30秒間の2つに
分けて各段の睡眠段階を示している。もっとも平均音圧
の大きい刺激である刺激音①Noiseでは5倍全例が刺
激音開始後の睡眠段階の変化（視覚判定）

<table>
<thead>
<tr>
<th>C.No.</th>
<th>Noise Music Haiku Crying</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AW-1 AW-AW AW-1 AW-1</td>
</tr>
<tr>
<td>2</td>
<td>AW-1 1 1 1 1 1-1</td>
</tr>
<tr>
<td>3</td>
<td>AW-AW 2-2 1-2 AW-AW</td>
</tr>
<tr>
<td>4</td>
<td>AW-1 1 1 1 1 1-1</td>
</tr>
<tr>
<td>5</td>
<td>AW-1 1 1 1 1-1 AW-AW</td>
</tr>
</tbody>
</table>

東京都環境科学研究所年報1987
激後半半で覚醒（Awake，AWと呼ぶ）を示した。しかし前半半では4例で、さらに後半の連載性が下がってstage 1へと入眠傾向を示すのがみられた。

最も解析例の強い刺激である刺激音④Cryingでも5例中4例が覚醒を示した。そのうち3例では刺激の前半半で覚醒水準が低い水準のまま保たれ入眠傾向を示さない。刺激音⑤Musicと刺激音⑥Haikuを合わせると刺激前のstage 2の段階から深い睡眠状態stage 1へ移行したものが8試行中で5例あった。またsatge 1からstage2, AWからstage 1へと刺激が続いているにも関わらず、前半半後半にかけて意識水準が低下したものが4例で、変化なく持続したものが4例であつた。最終全体の18試行を通じてみると、刺激中の前半半と後半の意識水準、意識水準の変化がなかったもの9例と意識水準がかな入眠傾向を示しもの9例と同数でつであった。

(2) 脳波トポグラフィによる変化

図2で示す21の識別について高速フーリエ変換からパワースペクトラムが導かれる（図3）。図中の細線2本は8.0Hzと9.8Hzの位置を示す。この線で囲まれた部分ALPHA1の平均パワーセットの範囲を求める。その平均根すなわち等価的電位が図中の右側に数値で示されている。図2ではそれぞれの電極の位置に対応させて電位が示されている。）は補間式で求めた数値を代入してある。図4ではこれを1段階に分け、電極位置に対応した等電位線（トポグラフィー）としてサーマルプリントに表示した。図中に黒い四角の点は21個の各々の電極位置に対応する。また表1は示す6つの帯域についてそれぞれの等電位線が得られる。

次に示すのは同じ症例の刺激音⑦Noiseが与えられる直前に60秒間の解析の結果である。視覚的たは安定したstage 2の睡眠状態が続く際、この段階の睡眠の特異的波形である波（hump）が頭部中心部から前頭にかけて出現する。これに対応して等電位線では図5のDELTA, THETAの帯域の電位値がハイバイドを示す。またもう一つの特異的波形（スパインド）spindle, 14Hz前方の波形）の現れとしてBEA 1に中央での増加がみられる。図6は刺激音①Noiseが開始してから約60秒間のものである。視覚
表3 各電極配置に対応した電位（症例3）

** 5 BY 5 MATRIX DATA **
ALPHA1 8.0〜9.8（Hz）

(LEFT) (RIGHT)

(UNIT: μV)	13,5651	16,3513	14,0734	(9,7242)
9,3146	11,2736	15,1267	17,3826	15,7632
10,0745	16,4049	20,6502	16,4891	9,6483
17,5377	20,0505	22,5569	19,6876	15,1118
(16,6732)	26,9241	14,2723	24,1328	(14,7167)

(): NO ELECTRODE POSITION

** TOPOGRAPHY **

ALPHA1
8.0 〜 9.8（Hz）

図4 ALPHA1帯域の等電位図（トポグラフィ）

| FREQUENCY-BAND CONFIGURATION |
〜NAME〜	FROM	TO (Hz)
1 DELTA	2.0	3.8
2 THETA	4.0	7.8
3 ALPHA1	8.0	9.8
4 ALPHA2	10.0	12.8
5 BETA1	13.0	19.8
6 BETA2	20.0	29.8

東京都環境科学研究所年報1987
図5 刺激直前の睡眠中の等電位図 (症例3)

図6 刺激開始後の等電位図 (症例3)

東京都環境科学研究所年報 1987
図7 刺激前後の脳波変化率（症例3）

きざみ（SENSE SIVITY）を示す。図中ではSENSEと表示している。）が70.38%でありALPHA 1では後頭部α波が150から300%も増加していることがわかる。またALPHA 2も後頭部で200%前後の増加を示し、BETA 2の選波も全般に増加している。

DELTA, THETA, BETAでは変化は1ステップ以下（70%以下）でレベル0の点で示されている。

刺激前の変化率について症例ごとに比較するために、各ステップの割合を10%で固定して検討した。各々の刺激によって刺激後の覚醒への変化が最も強くあらわれるALPHA 2（10.0から13.8 Hz）を中心に、遅いα波成分であるALPHA 1（8.0から9.8 Hz）を含めて検討した。図8では音圧レベルの最も強い刺激音Noiseの変化率について上段にALPHA 1、下段にALPHA 2を示している。下段に明らかにはっきりした覚醒に対応すると考えられるALPHA 2が頭部半部で50%以上増加するものが5例中4例であった。

次の図9では音圧レベルは最低だが、禁欲刺激をもっとも強く含む刺激音Cryingの変化率を示す。強い変化率50%以上をしめすものは2例であったが、全例頭部半部で10%以上のALPHA 2の増加を示している。刺激音Musicと刺激音Haikuでは頭部前方のα波の変化を見るため症例1、2、3の3例のみ検討している。

刺激音Music（図10）では覚醒を示した症例1では強く、わずかに覚醒傾向を示した症例2では弱く頭部半部のALPHA 1、ALPHA 2の増加がみられる。睡眠段階の変化の見られなかった症例3では脳波の変化が10%以下である。

刺激音Haiku（図11）では、睡眠段階がStage 1へと変化した症例2では頭部半部のALPHA 1、2がむしろ減少している。症例1、3では頭部半部のALPHAがいずれも増加しているのが見られた。

（8）刺激音の記憶

7 記憶再生の具体例について

実験後の思考状態再生された記憶の結果については表5に示すとおりだが、評価①good②bad③noneの各々について説明する。

具体的な実例をあげると①goodと評価したのは刺激音Musicの場合ではメロディまで記憶できたもので、
図8 瞑睡中、Noiseを与えたときの心拍の変化率

東京都環境科学研究所年報 1987
図9 睡眠中、Cryingを聞かせたときの脳波の変化率

東京都環境科学研究所年報 1987
図10 睡眠中、Musicを聞かせたときの脳波の変化率

図11 睡眠中、Haikuを聞かせたときの脳波の変化率
刺激音③Haiku では、俳句を正確に再現することが出来たものの、Noise については音の断続を指摘したものなどがある。

bad と評価した発音としては「何か騒がしいもの、脈絡のない、意味のないもので女の声です。」（俳句であることが把握されていない、筆者註）、「もうひとつ悪を男の声で言っていた。」（実際は女の声である。筆者註）「俳句で、葉などとかか、猫がどのこうのって……」（ねねねんこころり言いつながらの部分の歪曲と考えられる。筆者註）などの発音があった。

⑤none と評価したものの例を挙げれば、他に聞こえたものは何かと質問されてはじめて「あっ、そう言えばなにか音楽も聞こえていたような気もある。」「なにも音楽がなかったわ。クラスじゃない。ほかにも何か、あったような気もある。」などかなりあやふやな発音がある。

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Noise</th>
<th>Music</th>
<th>Haiku</th>
<th>Crying</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>good</td>
<td>bad</td>
<td>good</td>
</tr>
<tr>
<td>2</td>
<td>good</td>
<td>good</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>none</td>
<td>none</td>
<td>bad</td>
<td>good</td>
</tr>
<tr>
<td>4</td>
<td>none</td>
<td>()</td>
<td>()</td>
<td>good</td>
</tr>
<tr>
<td>5</td>
<td>none</td>
<td>none</td>
<td>bad</td>
<td>good</td>
</tr>
</tbody>
</table>

記憶の結果について

刺激音の想起、再生の結果については表 5 に示したが、刺激音①Noise については促されえて思い出すなど 5 例中 4 例で明確な記憶が形成されていないことがわかる。これは対照的に刺激音④Crying については全例で正確な記憶ははっきりと作られていて、注意を喚起することなくその再現が可能である。②Music についてはかなりその記憶について個人差が見られた。刺激音③Haiku では 4 例中 3 例では再質問で促されることがなく自発的に想起出来たが、記憶の内容がかなり歪んでいることが明らかとなった。

3 考察

騒音問題の中でも生活騒音はその程度を測定することが難しく、たんに一定の基準を設けて規制することで解決するとは考えられえない。しかしながら、その発生の経緯として、個々の事例について、個人、特定の音、音源、それをとりまく環境の 3 つの要因の相互関係の中で捉えていくことが必要である。生活騒音のなかでもとりわけ問題とされるのは、音楽のために眠ろうとしても眠れない、睡眠中で聴かせられるという深刻な睡眠障害の訴えである。騒音の調査でもこの訴えは、38, 30％と近辺騒音の中で第 1 位と第 2 位となっている。また騒音に悩まされる時間帯としても半数以上が夜間帯のとりわけ深夜、早朝である。

実験室内で音を負荷し睡眠構造に対する影響を調べた報告はいくつかあり、表 6 でその主なものとを示した。いずれの報告にも共通するものとしては、まず浅い睡眠段階が増加し、深い睡眠である深波睡眠が減少し、中間睡眠が増えるものである。逆に睡眠状態（REM睡眠）については報告によって大きく異なる。次に共通するものとしては、音圧のレベルを上げると、睡眠構造に対する影響が増すこと、最後にいずれの報告も音に対し、音の発音に対しては個人差がかなり見られると指摘していることである。

自験例をもとに睡眠時の音圧レベルが 40 dB (A) で影響を与えを越えることは睡眠条件として好ましくないと結論した長田はその報告の中で 40 dB より 5 dB のほうが、工場騒音より交通騒音のほうが、また白色雑音よりも実験騒音の方が影響が大きいとしている。こうした刺激音の種類によっても、睡眠中の反応は違う。播磨の指摘するように音の強さだけで音は感じていくつかり ريال音の母親が、髪の部屋の窓の音を耳を覚ますと言う話がある。眠っている場合でも、人が意味のある音と、そうでない音を区別して適切に対応していることを示している。しかし、こうした音の種類による人の睡眠時に関する反応の差を詳細に調べ、記憶の再生と睡眠との関連を検討した実験は未だにみられない。

我々はまず刺激をあたえる睡眠段階を睡眠中で最も安定しており、また実験室内で容易に得られ易い stage 2 にコントロールした。

音圧レベルが 4.95 dB と最も高い刺激音①Noise では全例の音が脳波被験者覚醒パターンを示した。しかしこの覚醒は一過性で 4 例ではすぐに眠り傾向を示し stage 1 のパターンに変化した。刺激が続いていたためにも関わらず、覚醒パターンが持続したのは 1 例のみである。また記憶に関しては自然に想起できたものは 1 例のみに過ぎなかった。刺激が単調で覚醒が持続せず記憶の形成が極めて悪いことがわかる。刺激の順序を代え

東京都環境科学研究所年報 1987
表6 音刺激負荷による睡眠の変化

<table>
<thead>
<tr>
<th>報告者</th>
<th>発表年</th>
<th>音刺激条件</th>
<th>睡眠の変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott</td>
<td>1972</td>
<td>白色雑音93±2dB</td>
<td>S1↑, S2↑, SWS(－), SREM↓, SREMの反跳増加, 入眠潜時(－), 全睡眠時間(－), 中途覚醒時間(－)</td>
</tr>
<tr>
<td>HerbertとWilkinson</td>
<td>1973</td>
<td>クリック音65, 75, 80, 90dB, 20秒間隔</td>
<td>SW↑, S1↑, SWS↓, SREM↓</td>
</tr>
<tr>
<td>中川</td>
<td>1976</td>
<td>パルス音1000Hz, 90±2dB, 持続20ミリ秒, 100, 40, 10, 25, 1秒間隔</td>
<td>S1↑, S2↓, 識別回数↑各睡眠段階の持続短縮, 睡眠潜時変化↑, 全睡眠時間(－), 入眠潜時(－), レム睡眠の周期性変動の変化(－)</td>
</tr>
<tr>
<td>長田ら</td>
<td>1968</td>
<td>絶音, 自動車・工場騒音約40dB, 55dB</td>
<td>深睡眠↓, 浅睡眠↑, 音刺激の種類, 剤薬量が関係</td>
</tr>
<tr>
<td>BerryとThiessen</td>
<td>1970</td>
<td>ガンナ音パルス120dB, トラック音70dB</td>
<td>トラック音による覚醒↑, 音刺激の種類が関係</td>
</tr>
<tr>
<td>LeVere</td>
<td>1972</td>
<td>ジェット機騒音80dB, 持続20秒</td>
<td>浅睡眠↑, 識別することなし</td>
</tr>
<tr>
<td>島方ら</td>
<td>1986</td>
<td>交響曲, 白色雑音60dB</td>
<td>音楽鑑賞時であるのかわらない, S1, S2をみて自覚的に目覚めていると言う陳述が多い。</td>
</tr>
</tbody>
</table>

注 逆睡眠の図より一部改変した。

ておこなった予備実験でも同様な結果が得られていることから記憶の形成の悪さは時間的経過に依らないと言える。脳波のトポグラフィでは視覚判定と同様に第3例が最も大きな変化を示したがこの例では記憶の形成は不良だった。そして第4例の右側で50%以上の変化を示した第2例のみがはっきりした記憶を残していた。平均音圧レベルが3.5dB以上の音の中で最も低く、かつ感情に対する刺激を最も強く持つ刺激音とCryingの刺激では1例のみだが突然の「起きて」の声に「はい」と返事をした。この例では、その発声による雑音のため脳波トポグラフィで解析が出来なかったが、Cryingの持つ感情刺激の強さを明快に示したとも言える。この音では5例中4例が視覚判定で覚醒反応を示し、また3例で覚醒パターンが持続した。記憶の形成では全例はっきりした記憶が自発的に記述された。視覚判定では第1例と2例でstage1段階がみられたが、脳波トポグラフィでは症例1と2では10%程度の変化が頭部半球で見られている。

刺激音①Musicと刺激音②Haikuでは上記の2つの刺激に比べて視覚判定での脳波の覚醒反応がどちらも少なく、個人差が大きい。刺激音①Musicで良い記憶の保たれた症例1と2で頭部半部右側で10%以上の増加を示す面積がひろいように思わされるが断定は難しい。刺激音③Haikuで歪められた記憶の再生を示した症例1と3ではALPHA帯域の増加がやはり頭部半球の右側で強い傾向を示した。記憶の再生が自発的にはなかった症例2ではALPHA帯域の変化が10〜30%の減少を示している。しかし脳波トポグラフィに関しては症例の少なさにもあって興味ある所見として残すのみとする。

以上の結果を模式図として図12に示した。細い線で

図12 睡眠中の記憶と脳波の変化の模式図

東京都環境科学研究所年報1987
示したのは刺激音の音圧レベルと、それに含まれる情報刺激の量を示している。視察判定による脳波の傾向にトポグラフィの結果を含めて示した。図の上部に太い線で示した直線は記憶の質と量が情報刺激の強さと平行していることを示している。

4 ま と め

音の聴覚構造に与える影響とその記憶の形成について検討するために実験を行い、つきの結論を得た。
(1) 情報刺激の量と音圧の強さが交互する4種の刺激音を設定し、睡眠段階 stage 2 で覚醒刺激として与えた。
(2) 各刺激の前後の脳波変化を観察法と脳波トポグラフィを用いて判定した。また実験終了後に刺激音についての記憶を聴取して3段階に評価した。
(3) その結果睡眠中に与えられた音の記憶の質と量は刺激の音圧に依らず、刺激に含まれる情報刺激の量と平行することが明らかとなった。
(4) 刺激前後の脳波変化は、音圧レベルの強いものと情報刺激の強いものでは高い2次曲線の形を取るものと思われた。

参考文献
1) 加藤輝明他：仮句を聞いていた胎児の記憶，産婦人医学，14(7)，1145—1147，(1984)
3) 藤波錦一郎他：近隣轟音問題に関するアンケート調査，日本音響学会誌，34(10)，592—599，(1978)
4) 北田徹夫他：聴覚の聴覚構造に対する影響に関する実験的研究，公害衛生院研究報告，17(3)，209—218，(1968)
5) 遠藤四郎：聴覚の衛生学，聴覚の科学，朝倉書店，東京，pp. 105—117，(1984)
6) 綱方茂樹他：音楽聴覚と聴覚，臨床聴覚，28(8)，548—553，(1986)