人工海浜（干渉）の浄化能について

木村賢史 三好康彦
嶋津晴之 紺野良子
赤澤豊 大島奈緒子
(非常勤研究員) (芝浦工業大学)

要旨
人工海浜の浄化能を把握するために昭和63年度から4年間、一部実験を含め葛西人工海浜（葛西海浜公園）、稲毛・検見川人工海浜及び自然干渉である三番瀬、盤洲干渉を対象に調査研究を進めてきた。その結果、
① 人工海浜、自然干渉では、COD値が沖合部に比べて著しく低く、海浜部の浄化能が認められた。
② 生物動物は、底質の強熱減量が2％前後で、水深4m付近までの海浜部に多く生息していた。
③ 人工海浜は自然干渉と比べて、底生動物の種類数等が少なく、底生動物により海浜・干渉から除去される有機物量は年間に、葛西人工海浜で119g/m²、稲毛・検見川人工海浜で103g/m²、三番瀬干渉で337g/m²、盤洲干渉で386g/m²と、人工海浜の浄化能は、自然干渉の約1/3であった。
④ 海浜部の砂泥中の微生物によるTOC分解速度実験では、好気的な葛西人工海浜や三番瀬のSt.2の砂泥が、嫌気的でシルトを粘土分を多く含む三番瀬St.12の砂泥よりも高い値を示した。
⑤ 0.15〜0.7mmまでの粒径の砂礫による浄化実験では、粒径の大きい順にCOD除去能が高かった。

1 はじめに
筆者は、海水の浄化には、自然の浄化機能を回復させ、かつ長く持つことが重要であるとの視点から、その一環として海浜・干渉（海浜部と記す。以下同様）の浄化機能の把握を目的とするための調査研究を行った。昭和63年度は、江戸川下流の葛西人工海浜を対象に水質面からの浄化能の検討を行い、報告した。また、平成元年度は、同海域における底生動物の生息状況の把握と浄化能について検討を行い、報告した。さらに、平成2年度は、比較する意味から稲毛・検見川人工海浜、盤洲干渉の底生動物相の現況と浄化能について調査するとともに、底質による水質浄化能力の相違を模擬海浜実験装置により試験し、報告した。今回報告は、これまでの調査結果に平成3〜4年にかけて実施した模擬海浜実験装置での実験結果と三番瀬干渉の調査結果及び屋内浄化実験結果を加え、総括したものである。

2 海浜や干渉の水質浄化能
(1) 調査海浜及び調査地点

平成3〜4年度は千葉県船橋市の三番瀬干渉について調査した。海浜の概況を図1に示した。なお、同様には平成元年〜3年度に実施した葛西人工海浜、稲毛・検見川人工海浜、盤洲干渉の調査も併せて掲げてある。図1〜4には、これらの海浜の調査地点図を示した。

東京都環境科学研究所年報 1992
表1 各海浜の概況

<table>
<thead>
<tr>
<th>因子</th>
<th>菅西人工海浜</th>
<th>柵見川人工海浜</th>
<th>直資干潟</th>
<th>三番領</th>
</tr>
</thead>
<tbody>
<tr>
<td>成因</td>
<td>人工海浜</td>
<td>人工海浜</td>
<td>自然干潟</td>
<td>自然干潟</td>
</tr>
<tr>
<td>流入河川</td>
<td>入川</td>
<td>——</td>
<td>小川川</td>
<td>江戸川放水路</td>
</tr>
<tr>
<td>浴場面積 (導流堤内側)</td>
<td>約50ha</td>
<td>約1200ha</td>
<td>約1200ha</td>
<td></td>
</tr>
<tr>
<td>調査</td>
<td>昭和63年10月</td>
<td>平成2年7月</td>
<td>平成2年7月</td>
<td>平成3年11月</td>
</tr>
<tr>
<td>月/日</td>
<td>平成元年5月</td>
<td>平成2年7月</td>
<td>平成2年7月</td>
<td>平成4年7月</td>
</tr>
<tr>
<td>場所</td>
<td>江戸川区</td>
<td>千葉市</td>
<td>木更津市</td>
<td>船橋市</td>
</tr>
<tr>
<td>周辺の状況</td>
<td>市街地に近接</td>
<td>市街地に近接</td>
<td>周辺は、民家田園地帯</td>
<td>市街地に近接</td>
</tr>
<tr>
<td>備考</td>
<td>観水施設</td>
<td>観水施設</td>
<td>アサリ、パカガイ採愛</td>
<td>アサリ採愛、のり</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>のり養殖</td>
<td>养殖</td>
</tr>
</tbody>
</table>

(2) 調査項目及び試料の分析方法

既報と同様の調査項目及び分析方法で行った。

(3) 結果と考察

浜部の浄化能の評価は、海浜部の水質と冲合部の水質の比較から行った。ただし、開放系の水域では、溶波や波浪、河川の流入等の影響もあり、海浜部の水質を正確に把握するには難しい面もある。そこで、海浜部の水質の把握では、水深約2mまでの水域で、かつ沖合の水質の影響が及ばない沿岸の地点に限定して行った。すなわち、菅西人工海浜（図1）では、海浜部はSt.21～28，沖合部はSt.1～7，12，13である。柵見川人工海浜（図2）では、海浜部はSt.13～15，沖合部はSt.1～3，5，8～12である。直資干潟（図3）では、海浜部はSt.10～15，19～21，沖合部はSt.1～9，16～18，22である。三番領（図4）では、海浜部はSt.1～7，沖合部はSt.8～19である。表2にこれらの水質調査結果を示す。いずれの海域でも海浜部のCODは、沖合部に比べて平均値で0.3～1.4mg/L程度低い値を示している。海浜部でのCODの低下は、①流入河川水による希釈②海浜部の浄化機能のいずれかと考えられる。図5～8に

図2 調査地点図（柵見川人工海浜）

東京都環境科学研究年度報 1982
各海域の測定点における塩分濃度とCOD値との関係を図示した。葛西人工海浜（図5）、三香浦干潟（図6）では、塩分濃度の等しいもので比較すると浜浜部のCODは、沖合部のCODよりも傾向として低く、盤洲干潟（図7）では、塩分濃度が沖合部でやや低く、流入河川である小種川の影響が沖合部に現れていると考えられた。しかし、小種川のCODは、4.9mg/l（小種橋：年度平均値）と沖合部のCODが全体的に低く、沖合部のCODに対する河川の影響は少ないとみられる。以上から、浜浜部のCODが沖合部より概ね低くなっているのは、流入河川の希釈作用によるものではなく、浜浜部の浄化作用によるものと考えられる。鈴木・池田川人工海浜（図8）については、①浜浜部のデータが少ないこと ②人工海浜の奥域が約100mと狭いことなどから浜浜部と沖合部でCODの差が明確に現れなかった。

桑原らが行った盤洲干潟における浄化量の概算結果で
表2 墨西人工海浜等の水質の概況

<table>
<thead>
<tr>
<th></th>
<th>葛西人工海浜（西なぎさ）</th>
<th>稲毛・検見川人工海浜</th>
<th>盤洲干潟</th>
<th>三番瀬干潟</th>
</tr>
</thead>
<tbody>
<tr>
<td>鹽分（%）</td>
<td>17.5-30.6</td>
<td>25.6-32.0</td>
<td>29.8-31.2</td>
<td>22.5-30.5</td>
</tr>
<tr>
<td>確定値（%）</td>
<td>15.1-43.0</td>
<td>21.8-55.1</td>
<td>16.8-53.0</td>
<td>21.8-53.0</td>
</tr>
<tr>
<td>水深（m）</td>
<td>0.5-1.4</td>
<td>1.3-11.0</td>
<td>0.9-10.7</td>
<td>1.2-2.5</td>
</tr>
<tr>
<td>水温（℃）</td>
<td>17.5-30.6</td>
<td>25.6-32.0</td>
<td>29.8-31.2</td>
<td>22.5-30.5</td>
</tr>
<tr>
<td>PH（pH）</td>
<td>7.8-8.2</td>
<td>7.8-9.2</td>
<td>7.8-9.2</td>
<td>7.8-9.2</td>
</tr>
</tbody>
</table>

図7 塩分濃度とCODとの関係

図8 稲毛・検見川人工海浜におけるCODと塩分濃度との関係

は、T-N、PO₄-Pの減少が著しいという。しかし、今回の調査では、T-Nの平均値が海浜部分やや低いものの、全体的には確認できなかった。

また、PO₄-Pについても特に傾向はみられなかった。

3 底生動物による浄化能の検討

(1) 調査海浜及び調査地点

平成3〜4年度は、三番瀬干潟について調査。調査地点は、St.2, 5〜18である。なお、葛西人工海浜はSt.2, 4, 7, 24, 26, 稲毛・検見川人工海浜はSt.
表3. 底生動物相の概要

<table>
<thead>
<tr>
<th>地域</th>
<th>基西人工漁場</th>
<th>端浦・興見川人工漁場</th>
<th>監測干潟</th>
<th>三香浦干潟</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>春</td>
<td>夏</td>
<td>秋</td>
<td>夏</td>
</tr>
<tr>
<td></td>
<td>時間</td>
<td>平成元年5月</td>
<td>平成元年10月</td>
<td>平成2年7月</td>
</tr>
<tr>
<td>頻度</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>種類数</td>
<td>全種類</td>
<td>59</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>15</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>範囲</td>
<td>9〜30</td>
<td>7〜23</td>
<td>1〜16</td>
</tr>
<tr>
<td>数値</td>
<td>個体数</td>
<td>平均</td>
<td>226</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>範囲</td>
<td>48〜541</td>
<td>19〜330</td>
<td>1〜336</td>
</tr>
<tr>
<td></td>
<td>試験値</td>
<td>平均</td>
<td>5.69</td>
<td>6.45</td>
</tr>
<tr>
<td></td>
<td>範囲</td>
<td>0.30〜17.46</td>
<td>0.18〜22.16</td>
<td><0.01〜4.44</td>
</tr>
<tr>
<td>主要種：出現個体数</td>
<td>アサリ</td>
<td>192</td>
<td>ハナオカガイ</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>亜種</td>
<td>type A : 25</td>
<td>type A : 30</td>
<td>type A : 12</td>
</tr>
<tr>
<td>注</td>
<td>数字は個体合計</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>個体数</td>
<td>Corophium sp.</td>
<td>15</td>
<td>Mediomastus sp.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Pseudopolydora sp/35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ヤマトスピオ</td>
<td>20</td>
<td>アサリ</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Corophium sp.</td>
<td>15</td>
<td>Mediomastus sp.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>フタガク</td>
<td>14</td>
<td>ヤマトスピオ</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>アシナガカガイ</td>
<td>4</td>
<td>細形動物</td>
<td>4</td>
</tr>
<tr>
<td>主要種の特徴</td>
<td>個体数が豊富</td>
<td>種類数が豊富</td>
<td>種類数が豊富</td>
<td>多毛類が多寡して出現</td>
</tr>
</tbody>
</table>
表4. 菅西人工海浜等の底質の概況

<table>
<thead>
<tr>
<th></th>
<th>菅西人工海浜</th>
<th>稲毛・検見川人工海浜</th>
<th>盤洲干潟</th>
<th>三奄瀬干潟</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>海浜部</td>
<td>沖合部</td>
<td>海浜部</td>
<td>沖合部</td>
</tr>
<tr>
<td>強風減量(%)</td>
<td>3.4</td>
<td>2.9</td>
<td>2.3</td>
<td>4.7</td>
</tr>
<tr>
<td>(1.4〜5.6)</td>
<td>(1.7〜7.6)</td>
<td>(2.0〜2.6)</td>
<td>(1.9〜10.3)</td>
<td>(1.1〜1.9)</td>
</tr>
<tr>
<td>粒度成分布分 (%)</td>
<td>0.1</td>
<td>4.3</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>砂分</td>
<td>58.7</td>
<td>88.7</td>
<td>89.9</td>
<td>44.0</td>
</tr>
<tr>
<td>シルト粘土分</td>
<td>41.2</td>
<td>7.0</td>
<td>4.0</td>
<td>56.0</td>
</tr>
<tr>
<td>中央粒径(μm)</td>
<td>0.10</td>
<td>0.19</td>
<td>0.23</td>
<td>0.09</td>
</tr>
</tbody>
</table>

1 〜 3，5，8 〜 15，盤洲干潟がSt.2，5，7 〜 15，1 8 〜 22である。

(2) 調査項目及び試料の採取方法等
既報と同様の項目及び採取・分析方法で行った。

(3) 結果と考察
1 底生生物の生活状況
三奄瀬干潟の底生生物相の概況を表3に示す。同表に
は、平成元年〜2年度に行った菅西人工海浜、稲毛・検見川
人工海浜、盤洲干潟の底生生物相の概況を併せて掲げる。
種類数をみると、盤洲干潟が80〜95種類と最も多く、当
干潟の自然環境が良好に保たれていることを示している。
ついてて菅西人工海浜と三奄瀬干潟が同程度の種類数であ
り、稲毛・検見川人工海浜は33〜34種類と少ない。ま
た、季節別の個体数をみても、盤洲干潟、三奄瀬干潟、
菅西人工海浜はいずれも台風による見落しの影響を受けて
初夏のほうが少ないものの、稲毛・検見川人工海浜は、
逆に秋に多くなっている。これは、春から夏にかけて
稲毛・検見川人工海浜の物質の栄養環境が悪化し、底
生生物の繁殖を抑制しているものと考えられる。表4は
各海浜の底質状況であるが、菅西人工海浜を除き、沖
合部の強熱減量が海浜部の1.1〜3.1倍、シルトと粘土分
が3〜20倍も高く、沖合部の底質悪化がうかがえる。海
浜・沖合両水域への流入有機物量に大きな差がないの
で、海浜部の強熱減量が低いということは、海浜部の浄
化能が高いことを示している。

底質の強熱減量と底生生物の種類数・個体量の関係
（図9，10）をみると、強熱減量2％前後が種類数・個体
量とも高く、この程度の強熱減量レベルが底生生物の
生息に適しているようである。また、水深2〜3mに底生生物の
種類数・個体量の関係（図11〜12）をみると、水深2〜4
m付近に最大値（現存量）のピークがあり、水深の増加
ともに減少している。種類数は、特に傾向はみられな
いが、全般的には沖合ほど水深に強い影響が多く出現して
いる。沖合での出現種は、主に河口に強い動物でな
り、特に河口に強いparaprimosio sp. type A，ヘナオカ
カニゴカイが優占している。以上のことから、底質の強
熱減量が2％前後で、干潮時には一部干潟が露出する水
深4m付近までの海浜部が底生生物の生息に適している
ことがわかる。

*平成2年度砂浜中のシルト粘土分の除去作業を
実施しているため平成元年度調査当時と比べて、現在の
底質は格段に改善されている。

イ 底生生物による除去有機物量

海浜部での底生生物の湿重量（現存量）が大きいとい
うことは、当水域の有機物を側として適量に取り込んで
成長していることであり、当水域の浄化能力が高いこと

東京都環境科学研究所年報 1992
去有機物量を試算すると、年間で気比人工海浜が38 t、稲毛・恵比寿人工海浜が52 t、三番瀬干潟が4050 t、盤洲干潟が4400 tであった。既報で述べた方法でこれら有機物量をCODに換算すると、海浜部の底生動物による年間のCOD除去量は、1メートル当たり気比人工海浜で39 g、稲毛・恵比寿人工海浜で25 g、三番瀬干潟で75 g、盤洲干潟で151 gと、自然干潟の浄化能がいかに優れているかがよくわかる。

次に、底生動物のなかで浄化能力が高いといわれるアサリによるCOD除去量を上記と同様にして算定すると、海浜部1メートル当たり年間で気比人工海浜で14 g、稲毛・恵比寿人工海浜で11 g、三番瀬干潟で24 g、盤洲干潟で40 gとなる。三番瀬干潟や盤洲干潟ではアサリの採集漁業が盛んなことから、実際にのアサリによる除去有機物量は、上記の算定値を上回ると考えられる。

※既報では、COD換算の際に各海域とも海水のCODを4 mg/Lとしたが、本報では底質COD（各々の海域のCOD平均値×0.3）を用いた。

4 砂泥中の微生物による浄化能の検討

底生動物とともに微生物が水質浄化に果たす役割は非常に大きい。海域において微生物の最も多い場所は砂泥中である。通常の培養では得られる生菌数の数倍の存在量を示すといわれている。そこで、現場の砂泥中の微生物がどの程度の水質浄化能を示すかを室内実験によって推定した。

(i) 実験装置及び実験内容

実験は図13に示す4皿の三角フラスコそれぞれに減菌海水1 ℓを注入し恒温槽で20度に保持した後、

① 対照（減菌海水のみ）
表5 海浜（干溝）別浄化能力の試算結果

<table>
<thead>
<tr>
<th>項目</th>
<th>萩西人工海浜</th>
<th>鳥取・衣見川人工海浜</th>
<th>益子干溝</th>
<th>三番瀬干溝</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物現存量</td>
<td>e/m²</td>
<td>84</td>
<td>57</td>
<td>296</td>
</tr>
<tr>
<td>年間生産量</td>
<td>e/m²</td>
<td>125</td>
<td>86</td>
<td>444</td>
</tr>
<tr>
<td>組成比</td>
<td>%</td>
<td>91</td>
<td>81</td>
<td>93</td>
</tr>
<tr>
<td>産量</td>
<td>e/m²</td>
<td>114</td>
<td>68</td>
<td>429</td>
</tr>
<tr>
<td>可食部の生産量</td>
<td>e/m²</td>
<td>29</td>
<td>17</td>
<td>107</td>
</tr>
<tr>
<td>腐の生産量</td>
<td>e/m²</td>
<td>86</td>
<td>51</td>
<td>322</td>
</tr>
<tr>
<td>組成比</td>
<td>%</td>
<td>9</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>産量</td>
<td>e/m²</td>
<td>11</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>摘取有機物質量</td>
<td>e/m²</td>
<td>265</td>
<td>230</td>
<td>814</td>
</tr>
<tr>
<td>有機物質量</td>
<td>e/m²</td>
<td>40</td>
<td>35</td>
<td>122</td>
</tr>
<tr>
<td>エネルギー消費量</td>
<td>e/m²</td>
<td>79</td>
<td>69</td>
<td>244</td>
</tr>
<tr>
<td>残存気化量</td>
<td>e/m²</td>
<td>146</td>
<td>126</td>
<td>448</td>
</tr>
<tr>
<td>COD摺取量</td>
<td>mg/L</td>
<td>277</td>
<td>165</td>
<td>1054</td>
</tr>
<tr>
<td>COD除去量</td>
<td>mg/L</td>
<td>42</td>
<td>25</td>
<td>158</td>
</tr>
<tr>
<td>除去有機物質量</td>
<td>mg/L</td>
<td>83</td>
<td>48</td>
<td>316</td>
</tr>
<tr>
<td>除去エネルギー消費量</td>
<td>mg/L</td>
<td>152</td>
<td>91</td>
<td>580</td>
</tr>
<tr>
<td>底質COD</td>
<td>mg/L.dry</td>
<td>3.7</td>
<td>3.7</td>
<td>3.4</td>
</tr>
<tr>
<td>底質強熱減量</td>
<td>%</td>
<td>2.2</td>
<td>2.2</td>
<td>3.2</td>
</tr>
<tr>
<td>水質濁度(COD)</td>
<td>mg/L</td>
<td>3.7</td>
<td>3.6</td>
<td>3.9</td>
</tr>
</tbody>
</table>

(2) 萩西人工海浜の砂泥
(3) 三番瀬ST.2の砂泥
(4) 三番瀬沖合ST.12の砂泥

を入れた各フラスコに人工下水を一定量投入し、海水中の有機物の分解速度を調べた。砂泥中の底生動物は事前に除いた。実験は表7の実験条件で16日間行った。

(2) 調査項目及び分析方法
調査項目は底質の粒度組成、強熱減量、水質のCOD、TOC、塩素、りんの6項目である。水質分析はJIS K 0102（工場排水試験方法）で行った。

(3) 結果と考察
実験は、各フラスコに人工下水を一定量投入し、海水中のCOD等の減少が、砂泥中の微生物によるとの前提

図13 底泥中の微生物による浄化実験概図

東京都環境科学研究所年報 1992
表6．底泥中の微生物による処理実験条件

<table>
<thead>
<tr>
<th>実験体</th>
<th>対象</th>
<th>西三畝原干溝</th>
<th>三畝原干溝</th>
<th>三璃原干溝合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用底泥量（g）</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>含水率（％）</td>
<td>9.4</td>
<td>9.6</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td>滞泥の状態</td>
<td>好気的</td>
<td>好気的</td>
<td>好気的</td>
<td></td>
</tr>
<tr>
<td>強熱滅菌</td>
<td>2.0</td>
<td>2.1</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>粒度組成</td>
<td>砂分</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>砂分</td>
<td>93.4</td>
<td>90.0</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>シルト粘土分</td>
<td>5.6</td>
<td>9.0</td>
<td>81.5</td>
</tr>
<tr>
<td>使用底泥</td>
<td>34.6</td>
<td>34.6</td>
<td>34.6</td>
<td></td>
</tr>
<tr>
<td>ばら気の有無</td>
<td>砂泥が連続</td>
<td>常時</td>
<td>常時</td>
<td>絶対低気性を誘引するため、底泥表面の1分間に1ばら気</td>
</tr>
<tr>
<td>添加した人工下水の組成（メスク添加）</td>
<td>オキシドリン（11.8％）</td>
<td>NaCl（2.5％）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>郎鳥（25.3％）</td>
<td>ペプトン（24.7％）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MgSO₄（1.5％）</td>
<td>KH₂PO₄（1.5％）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ニオキシス（24.7％）</td>
<td>KCl（5.0％）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表7．処理施設検討のための実験条件

<table>
<thead>
<tr>
<th>番号</th>
<th>容量（L）</th>
<th>寄生菌（％）</th>
<th>空隙率</th>
<th>充塩物の大きさ（cm）</th>
<th>水流量（cm/s）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>212</td>
<td>3〜5cm（村長）</td>
<td>9.6</td>
<td>3〜5cm（村長）</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>196</td>
<td>3〜5cm（村長）</td>
<td>6.6</td>
<td>3〜5cm（村長）</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>498</td>
<td>15cm（中央裁断）</td>
<td>33</td>
<td>15cm（中央裁断）</td>
<td>7.2</td>
</tr>
<tr>
<td>D</td>
<td>399</td>
<td>7cm（中央裁断）</td>
<td>26</td>
<td>7cm（中央裁断）</td>
<td>3.2</td>
</tr>
</tbody>
</table>

※1．ムテサキイガイ漂死後は、コウロオエンカワシバ（底長約2cm）をA・B両槽に約1kg販売した。
※2．流入底泥は、2000L/m分（年度平均）注入した。

図14　三畝原（ST.2）底泥の微生物によるCOD、TOCの挙時変化

好気的な海浜部の砂浜内では、深層でも微生物の生活を可能とし、砂浜内30cmまでは顕著な個体数の減少は認められないといわれる。林や常磐らの調査によると、砂泥中の微生物数は年間あまり変動せず、砂浜内の微生物分解は1年中行われ、砂浜内の微生物による浄化量は一層大きくなると考えられる。

5 底質中の砂泥の粒径と浄化能の検討

これまでの検討結果を基に、人工海浜の浄化能の向上という観点から、底質中の砂泥の粒径と浄化能との関係
を実験により検討した。詳細は既報に報告する。

(1) 実験装置及び内容等
実験は、6槽の実験槽（No.1～6：各槽の大きさは30cm×30cm×L.5m）にかくはん羽根を設け、各槽に粒径の異なる砂礫を充てんし、波を起こすことにによる槽内に滞留した海水中のCODや塩素等がどのような時間変化を示すのかを検討した。

(2) 結果と考察
① 中央粒子0.15～7mmまでの砂礫では、粒径の大きい順にCODの添加が進んだ。この原因は、粒径が大きいほど透過係数も大きく、槽壁内の水交換が円滑に進み、槽壁全体で好気性分解が行われたためと考えられる。
② NH3-Nは、CODとほぼ同じ傾向を示し、中央粒子7mmの砂礫では、実験開始後4時間で沈降が完了している。このことにより、硝化菌の菌体量も粒径の大きい順に増えていていることを示す。
③ T-N及びPO4-Pについても同様に調べたが、ほとんど変化がみられず、今回の実験では除去効果は確認できなかった。
④ 大腸菌群数はいずれの槽もおおむね減少した。とりわけ、好気性微生物の活動が活発な7mmの粒径の砂礫で大きく減少しており、大腸菌群数の浄化にも効果があった。

以上の結果から、0.15～7mmの粒径の範囲内では、粒径の大きい順に好気性微生物の活動が盛んで水質浄化能力の大きいことがわかった。

6 海浜・干潟の浄化機能を生かした浄化施設の実験例

海浜や干潟を持つ自然の浄化機能を生かした浄化施設を検討した場合、どの程度の浄化効果が得られるのか、小規模な実験装置で簡単な実験を行った。

(1) 実験装置及び内容等
実験装置は、上記の実験と同じ場所で装置もほぼ同一である。ただし、実験条件は、前槽でプランクトン等の懸濁有機物を対象に、後の槽で残りの有機物を浄化する仕組みにした。生物槽では二枚貝等を、植物槽では上記の実験結果で最も高い浄化能を示した粒径7mmとさらに粒径の大きい15mmの砂礫を用いた結果の表7のように充てんし、CODやTOC等の除去効果を検討した。実験では、原水を約8ヵ月間連続的に通水した。

東京都環境研究所年報 1982
要因としては難しい面もあるが，施設の規模を大きくし，環境の変化に対する緩衝能力を大きしくしたならば，
処理能力をとじた一定の効果が得られると考えられる。

イ 碳素への影響

A，B槽を通過後，COD（図18）はC槽，D槽で急速
に減少しており，年度平均でC槽10％，D槽10％まで
28％削減されている。しかし，処理に貢献する藻類間の生
物膜は，水温の影響を受ける。そこで，水温が大きく異
なる夏期（7，8月）と冬期（10月〜2月）のCODの変化
をとると，夏期は，Cで30％，D槽末段で40％，冬期では
Cで20％，D槽末段で35％の削減を示した。単位当たりの
COD削減量をみると，C槽では対1㎡（藻類の厚さ25cm
の場合）当たり夏期で72.2g/㎡，冬期で21.2g/㎡，同じく
D槽で対1㎡（藻類の厚さ25cm）夏期で17.7g/㎡，冬期で1.8g/㎡
となった。C槽では冬期は無処理の3/5に処理能力が低下している。
なお，D槽では逆に夏期の処理能力が低いため，これは夏期
による藻類の生成が発生し，藻の処理能力が十分発揮されなかったことによる。

藻による処理で最大の課題は，砂泥や生物膜による藻
類の閉塞である。D槽で夏期に槽内の水質を停止した
結果，10日間で閉塞状態が発生した。大量排泄をした
8ヶ月間の実験期間中でも2回閉塞状態の発生を引き挙げ
なかった。したがって，今後，D槽の密閉処理による
生物膜の生成の閉塞の防止，は早く発見された生物膜等の沈
着池での回収を進めれば，処理効率はさらに高まると考え
られる。

T−Nについては，5の実験結果と同様，目立った改
善はみられなかった。そこで，C，D槽の水質を停止し，
藻による処理状態にすることにより脱窒を期待したが，T−N
の減少は認められなかった。なお，Nは，C槽で30％
以上がNOx−Nと，硝化は充分進んでいることから，Nの
削減見られない原因として，①槽内のDOが低下している
②有機物供与体の不足が考えられるから，充分検討のま
では至らなかった。また，大腸菌群数の変化では，A
槽で上昇するものの，その後は減少しており，C，D槽
での処理成績は5の実験結果とほぼ一致している。

7 まとめ

これまでの研究結果をまとめると次のとおりである。

(1) 海浜部では，沖合部に比べてCODで0.3〜1.4mg/L
低く，海浜部での水質処理が現象面からおおむね確認

東京都環境科学研究所発行 1992
された。

（2）底生動物の生息状況をみると、①種類数では、磐
洲千穂が80～85種と最も多く、次に葛西人工海浜、三番
瀬干潟、穂毛・検見川人工海浜であり、穂毛・検見川人
工海浜では33～34種と少ない。②生息環境では、底質の
強熱減量値2％前後で、干渕時には一部が露出する水深4
m付近までの海浜部が適しているようである。

（3）底生動物の多プライ有機物量は、葛西人工海浜で
119 g/m²、穂毛・検見川人工海浜で103 g/m²三番瀬干
潟で337 g/m²、磐洲干潟で366 g/m²となり、人工海浜
は、自然干潟の約1/3の有機能を示している。この値
を各海浜（干潟）の面積から試算すると、年間に合って葛
西人工海浜で38 t、穂毛・検見川人工海浜で52 t、三番
瀬干潟で4050 t、磐洲干潟で44000 tの有機物が底生動物
により除去されている。

（4）砂浜中の微生物による浄化能を示す海水のTOC分
解速度をとると、葛西人工海浜>三番瀬干潟>ST.2>三
番瀬干潟>ST.12の順であり、好気的な葛西人工海浜や
三番瀬ST.2の砂浜が、嫌気的なシルトや粘土分を多く
含む三番瀬ST.12の砂浜よりも高い値を示した。

（5）底質の砂礫の粒徑による浄化能は、中央粒径
0.15〜7 mmの範囲内では、粒径の大きい順にCODの除
去能が高かった。この理由として、粒径の大きい砂は間
隔が多く透水係数が大きいため、効率のよい好気性微生
物の活動がおお盛となり、高い浄化能を示すと考えられ
る。

（6）自然の浄化機能を生かした浄化施設の実験例で
は、底生動物による浄化効果はみられるが、環境の変化
を受けやすいという不安定な面がある。礁捨てのCでは礁
1 m²（礁の厚さ25cmの場合）当土地面で5.2 g/日、冬
期で2.1 g/日、同じD礁1 m²当たり夏期1.7 g/日、冬
期で1.8 g/日の浄化能を示したが、D礁では夏期に生物
膜による礁間の閉塞が起こり、浄化能が低下した。大腸
菌群数についても、礁捨てを通過することにより減少した。
以上の結果から、人工海浜は自然干潟と比べて、底生
動物の種類数が少なく、年間底生動物により海浜（干
潟）から除去される有機物重量、自然干潟の約1/3で
あった。しかし、人工海浜の利点は海浜の基質（砂等）
を選んで造成できることである。人工海浜の造成を水質
浄化という観点から捉えた場合、砂と礁を組み合わせ
た水深4 m付近までの海浜・干潟の造成、投入する礁石
中のシルトや粘土分の低減化、ムラサキカイガイ等の付着
する岩場の遮蔽により、多種多様な底生動物や好気性微
生物等を豊かに生息させていくことが今後重要となる。
なお、調査を進めるに当たり、千葉県水产部をはじめ
金田漁業組合組合、船橋漁業組合組合、都港局及び水
質監視課海浜分析担当者からの多大な協力を得た。厚く感謝
する。

参考文献
1）三好康彦ら：人工海浜の浄化能力について、東京都
環境科学研究所年報1990，p.120〜125
2）木村喜史ら：人工海浜の浄化能力について（2）、東
京都環境科学研究所年報1991，p.141〜150。
3）三好康彦ら：人工海浜の浄化能力について（3），東
京都環境科学研究所年報1991-2，p.117〜123。
4）赤澤 豊ら：人工海浜の浄化能力について（4），東
京都環境科学研究所年報1992-1，p.124〜134。
5）環境庁・汀線変化環境影響評価調査報告書（昭和55
年3月），p.167〜175。
6）運輸省：東京湾自净能力調査報告書（昭和55年3
月），p.119〜121。
The Purification Ability of Artificial Tidal Flat

Kenshi Kimura, Yasuhiko Miyoshi, Teruyuki Shimazu
Ryouko Konno, Yutaka Akazawa* and Naoko Ohshima**
* Part-time researcher,**Sibaura Institute of Technology

(Abstract)

The purification ability of artificial tidal flat at KASAI, INAGE·KEMIGAWA and natural tidal flat at SANBANSE, BANZU in the period of 1988-1991 has been investigated.

Following results were obtained.
(1) COD values of sea water on the surface of the tidal flat were lower than those on the off-shore. It was caused by the purification ability of the tidal flat.
(2) A large number of macrobenthos were living in the sandy mud of about 2% at ignition loss and in the water of 4m depth.
(3) A species of macrobenthos living in the man-made tidal flat are fewer than those of the natural tidal flat. Organic matters purified by macrobenthos were 119g·m⁻² at KASAI, 103g·m⁻² at INAGE·KEMIGAWA, 337g·m⁻² at SANBANSE and 366g·m⁻² at BANZU for a year. The purification ability of the man-made tidal flat was about 1/3 of the natural tidal flat.
(4) The purification rate of TOC by bacteria in the aerobic sandy mud of KASAI and SANBANSE ST.2 was larger than the anaerobic sandy mud of SANBANSE ST.12 including silt and clay.
(5) In the purification experiments used by the gravel with its particle size between 0.15-7mm, the purification of COD was increasing in proportion to the size of particles.