論文

水浸復活水路の
ユスリカ群集に及ぼすPAC (ポリ塩化アルミニウム)・オゾン処理の影響

大野正彦　古明地哲人

要旨

水浸復活水路（玉川上水、野次止用水、千川上水）の水質の改善を目的として、水路の多摩川上流処理場において脱りんのためのPAC (ポリ塩化アルミニウム凝集剤)処理、脱色脱臭のためのオゾン処理が始まった。新しい高度処理の導入によって 3 水路のユスリカ群集の変化を考察し、以下の点を報告した。
1. 玉川上水放流口ではPAC・オゾン処理が始まると、ユスリカ幼虫個体数が激減した。優占していたGluptotendipes tokunagaiがみられなくなり、種類数も徐々に減少した。
2. 放流口より下流に位置する野次止用水万年橋、玉川上水岩崎橋では処理後、幼虫個体数が増加したが、ユスリカ群集は大きく変わらなかった。千川上水起点の群集も大きく変化しなかった。
3. オゾンが玉川上水放流口のユスリカ群集に影響を及ぼし、流下する内にその効力を失うと推測した。

1 はじめに

東京都はうるおいある水辺環境を創造するため、「水浸の復活」事業を策定し、多摩川上流（下水）処理場の処理水を水道にして1984年8月に野次止用水、86年8月に玉川上水38年3月に千川上水を盛らせた（図1）。水質の改善を目的として91年4月から処理場において、脱りんのためのPAC (ポリ塩化アルミニウム凝集剤)処理、脱色脱臭のためのオゾン処理を行われた（図2）。このような高度処理は今後多く用いられると予想されるが、処理水放出先の河川や水路に生息する底生専用に及ぼす影響についてはほとんど知られていない。そこで、筆者らは、これらの処理前後に玉川上水等3水路を調査し、底生動物群集の変化を知ろうとした。前報1)で水質、底生動物相について検討し、以下の点を報告した。
1) PAC・オゾン処理が行われると今まで淡い褐色であった水が透明になり、臭気、りん酸イオンが減少した。
2) 大形の底生動物相はほとんど変化しなかった。
3) 処理後、調査地点中最も処理場に近い玉川上水放流口でユスリカ幼虫（主にGluptotendipes tokunagai）が激減した。

しかし、前報1)では各地点で採集したユスリカ幼虫を詳しく同定しておらず、どのような種が出現したかは述べていない。今回、ユスリカ幼虫の種類を明らかにし、PAC・オゾン処理前後及び地点間の比較を行い、新しい

図1 調査地点

![調査地点図](image)

図2 多摩川上流処理場における放流水 (玉川上水等の水道)の処理経路

*1991年4月からPAC・オゾン処理が開始される
処理の導入による3水路のエスリカ群集の変化を検討したので報告する。

この処理の影響を知るため、玉川上水、野火止用火消水、水万年川、玉川上水付近を除いて、ほぼ毎月行われていた殺虫剤散布（昆虫成長阻害剤ジフルベンゾン）を1991年3月以後停止した。殺虫剤散布停止後のエスリカ群集の変化についても言及する。

2 調査地点・時期・方法

(1) 調査地点

前報の4地点（St.1玉川上水放水路、St.2野火止用火消水、St.3千川上水起点、St.4玉川上水岩崎橋、図1）のエスリカ幼虫を調べた。以下、それぞれSt.1, 2, 3, 4と称す。調査地点の位置、環境、殺虫剤散布の有無を表1に示した。

<table>
<thead>
<tr>
<th>調査地点の環境要因</th>
<th>St.1 玉川上水放水路</th>
<th>St.2 野火止用火消水</th>
<th>St.3 千川上水起点</th>
<th>St.4 玉川上水岩崎橋</th>
</tr>
</thead>
<tbody>
<tr>
<td>地図</td>
<td>部門</td>
<td>上流の土壌に</td>
<td>下流の土壌に</td>
<td>受け入れ可能な</td>
</tr>
<tr>
<td>水温 (℃)</td>
<td>5～25</td>
<td>10～30</td>
<td>15～30</td>
<td>10～15</td>
</tr>
<tr>
<td>養養後の洪水</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>火止処理 (いずれも8月)</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>数値値 (2cm)</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
</tr>
</tbody>
</table>

(2) 調査時期

PAC・オゾン処理前の1990年、秋季の処理による2ヶ月、秋の処理を受けた図に、11月の調査を行った。また、処理開始から1年以上経過した時点の変化を知るために92年12月に調査を行った。

(3) 方法

エスリカ幼虫の試料(25cm×25cmの金属方格柵、目的網345μmのセーラネットを用いて採集)を5％水酸化カリウム水溶液に1～2日間浸漬した。酢酸で中和して、ガムクロール液で封入したスライド標本を作った。顕微鏡で尾部の形態を調べ、種の同定、個体数の定量を行った。

また、92年12月に新たに採集した各種底生動物の個体数を調べ、同様にエスリカ幼虫を同定した。

3 結果

(1) 1990年5月～92年2月の調査

ア エスリカ相の変化

4地点で採集されたエスリカの種類を図4に示した。今回の調査で同定できた種群類（taxon数）（以下種類数と称す）は、モンエスリカ亜科2、ヤマエスリカ亜科1、エスリカ亜科20、エスリカ亜科17（Chironomini族10、Tanytarsini族7）であった。各地点の種類数はSt.1～4でそれぞれ15、21、27、28で、下流になるに伴い減少した。St.3でモンエスリカ亜科幼虫、St.4でヤマエスリカ亜科、ヤマエスリカ亜科幼虫が採集され、これらの地点のエスリカ相はSt.1、2に比べ多様であった。

次に各種の出現状況をみると、St.1では Cricotopus bicinctusが91年7月（処理開始3ヶ月後）、St.2のタカナガミが92年9月（同5ヶ月後）から採集されなくなった。また、広い分布域を持つ Nanocladius tamaiochus、Rheocricotopus sp.は91～92年の調査で採集されなかった。下流部には多様性の小さいSt.1が処理後、より貧弱なエスリカ相になった。St.2～4では、処理前後で共通して出現した種はそれぞれ15、22、21で、各地点の全種類の71％（15/21）、81％（22/27）、75％（21/28）であった。これらの地点ではG. lukanagaiがみられなくなった以外は種類が大きく変化することなかった。

種類数の変化を図4に示した。上流部のSt.1の群集は PAC・オゾン処理後、徐々に減少し、91年9月（処理開始5ヶ月後）、11月（同7ヶ月後）に各種類、92年2月（同10ヶ月後）に2種しか採集されなかった。それに対し、St.2～4では処理後も種類数はあまり変わらなかった。このことは、殺虫剤（昆虫成長阻害剤)散布が停止しても短期的にはSt.2～4の種類数が増えず、エスリカ相に大きな変化が生じなかったことを示した（St.2～4で散布型と散布停止型で共通して採集された種は、各地点の全種類のそれぞれ71、78、75％）。

東京都環境科学研究所年報 1993
ここではコダクシマトピケラ幼虫が多数出現した。St.3、4のエスリカはそれぞれ1200、592個体/25×25cm²で、両地点とも90年5月～92年2月の密度（図5）を上回った。

表2 清流復活水路の底生動物（1982年12月12日調査）

<table>
<thead>
<tr>
<th>項 目</th>
<th>野川上水</th>
<th>野川上水</th>
<th>野川上水</th>
<th>野川上水</th>
</tr>
</thead>
<tbody>
<tr>
<td>類型</td>
<td>酸素</td>
<td>酸素</td>
<td>酸素</td>
<td>酸素</td>
</tr>
<tr>
<td>水生昆虫</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>バラモシ</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

数字：個体数/25×25 cm²

エスリカ幼虫の同定結果を表3に示した。G.tokunagaiは採集されず、下流部になるに伴い種類数が4, 8, 15, 20と増加した。St.1では4種類が1個体ずつで、個体数も4地点中も少なかった。St.2, 3ではエスリカ亜科R.kyotoensisが最も優占したが、この種はSt.4では優占順位2番目にあり、エリユリカ亜科Rheocricotopus sp.に代わった。St.2, 3でエスリカ亜科の個体数が多く、St.4でエリユリカ亜科が多かった。地点

表3 清流復活水路のエスリカ幼虫（1982年12月12日調査）

<table>
<thead>
<tr>
<th>項目</th>
<th>野川上水</th>
<th>野川上水</th>
<th>野川上水</th>
<th>野川上水</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸素</td>
<td>酸素</td>
<td>酸素</td>
<td>酸素</td>
<td></td>
</tr>
<tr>
<td>酸素</td>
<td>酸素</td>
<td>酸素</td>
<td>酸素</td>
<td></td>
</tr>
</tbody>
</table>

数字：個体数/25×25 cm²

イ 幼虫個体数の変動

各地点の幼虫個体数は図5に示した。St.1では、PAC・オゾン処理が進まると、通水後から一貫して優占していたG.tokunagaiが急激に減少し、前述のように91年5月調査終了後に採集されなかった。他のエスリカ個体数も減少した。これに対し、St.2, 4では91年5月頃（処理開始1ヶ月後）から殺虫剤散布停止3ヶ月後）から幼虫個体数が増加した。St.2ではエスリカ亜科のRheocricotopus sp., Thienemannia matsumura）の個体数が増し、これは通水値（殺虫剤散布中）から生息していた種であった。St.3の個体数は著しく減少したが、R.kyotoensis, Rheocricotopus sp., T.majuscula, Polypedileum sp.が調査期間を通じて優占し、優占種の変化はみられなかった。

Chironomus yoshinatsui（セスジエスリカ：汚れた都市河川等で大発生し問題になる種）は今回の調査（'90年5月～'92年2月）で優占種となることはなく（図5）、全調査（41回）中3回採集されただけであった（図3）。この種は通水後も2年ないし'85年87年の玉川上水、野川上水で優占された。エスリカは大形底生動物相は依然として貧弱であったが、長期的にみれば（'85～'87年の調査と'90～'92年の調査を比較すれば）、エスリカ内で種類の変動が見ていることがわかった。

(2) 1992年12月の調査

採集された底生動物を表2に示した。前報同様、貧弱な底生動物相であった。St.1ではエスリカ幼虫が依然として少なかった（4個体/25cm²）。それに対し、
による亜科の多少は約1年前の91年11月の調査（図5）と同様であった。

前述した90年5月～92年2月の各地点のエスリカ類（図3）に新たに加わった種はSt.1～4でそれぞれ1種（"Piometronocuem sp."）、2種（"Smittia sp."、"Cystosphaera sp."）、1種（"Neozavrelia sp."）、1種（"Gymnotriornocuem sp."）であった。"Smittia sp."、"Gymnotriornocuem sp."の幼虫は陸生が多く、採集されたものは水辺の土壌から混入したものであろう。

各地点のエスリカ群集は、①エスリカの種類、個体数がSt.1で少なく、下流で多くなり、②St.2～4で近似種の交代がみられず、③各地点に新たに加わった種が少ないことから92年2月の調査以後変わっていないことがわかった。

4 考察

PAC・オゾン処理が始まるとき、St.1でエスリカの種類数が徐々に減少し（図4）、幼虫個体数が激減した（図5）。通水以来St.1で一貫して優占し、水脈の処理場（第二発電所、砂浜沿設施）及び導管に由来するG. tokunagaiは91年9月（処理開始5ヶ月後）の調査以後採れなくなった（図3）。G. tokunagaiだけでなく、広い生息域をもつC. bicinctus、2～5ヶ月に多数出現するP. rufiventris等の個体数も減少した。92年12月（同1年8ヶ月後）の調査でもSt.1のエスリカ幼虫は少なく（表2）。

PAC・オゾン処理の導入後、St.1でエスリカ幼虫が激減し、優占していたG. tokunagaiがみられなくなった原因を考察する。まず、PAC、オゾン以外の要因について検討する。St.1の河床構造、流速、水温は処理場でほとんど変わっていない。日照が遮られていないうちの処理後の付着藻類のクロロフィルaは200〜500μg/m²で、この値は富栄養化が進んだ多摩川河口付近の水域と同程度で、藻類が繁殖できない環境になったとは思えない。水辺の陸生植物が変化していないことから、河川に流入する藻類（エスリカの雄）の量も大きく減ていないと思われる。

St.1における水質的な変化を次に検討する。各調査時のりん酸イオンは処理後、減少し（処理前：0.4以下〜1.6mg/ℓ、処理後：0.4mg/ℓ以下）11、全りんの処理前と処理後の年間平均値もそれぞれ1.62、0.32mg/ℓで、大きく減少した。アンモニア窒素素が処理後増加したが（処理前：0.1以下〜0.9mg/ℓ、処理後：0.6〜5.0mg/ℓ）、硝酸窒素素は10mg/ℓ内外で変わらなかった11。

BODの年間平均値は処理前と後で、それぞれ3.7、5.8mg/ℓで、BOD（河川水質の改善）はみられなかった。COD平均値はそれぞれ11.3、7.1mg/ℓで約4割ほど減少した11。Mg²⁺が半減した（3→1.5mg/ℓ）、Na⁺、K⁺、Ca²⁺、Cl⁻、SiO₃⁻は変わらなかった11。

以上述べた程度の水質変化が、St.1におけるエスリカ幼虫の生態を鰐害しているとは思えない。新たに導入したPACまたはオゾンがエスリカに影響を及ぼしていることが推測される。

PAC、オゾンの影響は処理場の内外と外に分けて考察する。PACが注入されることで（注入深度8m/ℓ）、第二発電所から流入するエスリカ幼虫、及び砂浜沿設施（図2）に生息していたものが容易に洗浄され、除去されると考えられる。また、それに続くオゾン反応槽で高濃度（3mg/ℓ）のオゾンに曝されると処理場由来のエスリカ（主にG. tokunagai）は減少した要因と思われる。

次に、処理場外の導入口（図2の）の減少を考察する。PACの48時間TLerrer（PH7.5、20±1℃）はニメガ、アサリで10,000mg/ℓ以上である9。今回のPAC注入深度（8m/ℓ）、放流水に殆どPACが残存しないことに沿って、PACが処理場外のエスリカ幼虫の分布を制限することは考えられない。

オゾンは塩素各形態に比べ強力な殺菌効力を持ち、大腸菌ではオゾン濃度0.01mg/ℓ、接触時間1分で99%が不活性化（殺菌）されるという9。ウィルスでは1mg/ℓ弱、1分間接触で同様の効果を示している9。

この効力は水生生物に悪影響を及ぼし、魚を保護するためには水中残留オゾンは少なくとも0.05mg/ℓ以下で保つ必要があるといわれている9。オゾンはエスリカにとって毒性があると思われる。放流水に微量的に残留するオゾン、または反応生成物が導管内及びSt.1のエスリカの生活を抑え、流下する内に分解してエスリカに対する効力を失うとすれば、今回の調査結果を説明できるように思われる。それを確かめるために水中のオゾン濃度の測定、オゾンに対するエスリカ幼虫、カタシマヒメヒラ幼虫（エスリカと異なりSt.1で多数生息）の感受性試
図5 玉川上水、野火止用水、千川上水におけるユスリカ幼虫個体数の変動
1981年4月から水処理多摩川上流（下水）処理場でPAC・オゾン処理が始まる
*: 1991年2月まで昆虫成長期密着をほぼ月1回の割合で散布

東京都環境科学研究報告 1993
酸を行う必要があると思われる。

殺虫剤（昆虫成長阻害剤）散布の停止はPAC・オゾン処理と連動しているため（両者がほぼ同時期に行われた、その停止がユスリカ群集に及ぼす影響を明確に把握できなかった。しかし、St.2、4では散布停止後に個体数は増えたものの、散布時期に現れる種とあまり違いはみられなかった。St.3でも種類の大きな変化はなかった。前報で、殺虫剤散布停止後、ユスリカを除く大形底生動物の種類がSt.2〜4で大幅に増えることはなかった）と述べた。同様のことがユスリカでもいえ、玉川上水等で殺虫剤（昆虫成長阻害剤）散布を停止してもすぐにユスリカの種類が増すことはないように思えた。

今まで述べてきたように短期間（90〜92年）の調査では、St.1を除くユスリカ群集の変化は顕著ではなかった。しかし、長期的にみればユスリカで種類の変化がおきている。'85〜'87年に優占したC.yoshimatsuiが今回の調査全般を通じて優に高く、前種に比べて汚染の少ない水域に生息するR.kyotoensis、Rheocrinotopus sp、T.majesculaが優占した。'87年6月以後のアンモニア懸濁液の減少（放流水の濃度：'87年5月2.17mg/l、6月0.21mg/l）が、懸濁液の多様化を高めたという。

アンモニア懸濁液の減少が様々なユスリカを生息させ、優占種を変えた要因の一つと推測できる。前述のように処理後、アンモニア懸濁液濃度が増加したC.yoshimatsuiの今後の動向に注目する必要がある。

5 まとめ

清流復活水路（玉川上水、野火止用水、千川上水）の水質の改善を目として、水路の多摩川上流処理場において脱りんのためにのPAC（ポリ塩化アルミニウム凝集剤）処理、生息状況のためのオゾン処理が'81年4月から始まった。新しい処理方式の導入によって3水路（4地点）のユスリカ群集がどう変化するかを'90年5月〜'92年12月に調査し、以下の報告した。

①玉川上水放流水路ではPAC・オゾン処理が始まると、ユスリカ幼虫個体数が激減した。処理水を水路に通水して以来著しく高かった Glyptotendipes tokunagaiがみられなくなり、種類数も徐々に減少した。

②野火止用水万年橋、玉川上水遇崎橋では処理後、幼虫個体数が増加したが、ユスリカ群集は大きく変わらなかった。千川上水起点の群集も大きく変化しなかった。

③オゾンが玉川上水放流水のユスリカ群集に影響を及ぼし、流下する内にその効力を失うと推測した。

④殺虫剤（昆虫成長阻害剤ジフェルベンゾロン）の散布を停止しても玉川上水等のユスリカの種類がすぐに増えることはないように思えた。

'85〜'87年の調査で優占したChironomus yoshimatsui（セスユスリカ：大発生して問題になる種）が今回の調査全般（'90年5月〜'92年12月）を通じて優かであった。前種に比べて汚染の少ない水域に生息するRheocrinotopus kyotoensis、Rheocrinotopus sp、Thienemanniella majescula等が優占した。

本調査に当たり様々なご便宜をはかっていただいた多摩川上流処理場水質管理係の皆様に深謝いたします。

参考文献
1）大野正彦ら：玉川上水、野火止用水、千川上水の底生動物相、東京都環境科学研究所年報1992、p.264-273。
2）大野正彦ら：野火止用水、玉川上水に生じるユスリカ幼虫、東京都環境科学研究所年報1991-2、p.259-264。
3）大野正彦：東京都内におけるユスリカの生態IV、多摩川河川敷に採取されたユスリカ成虫、その現状観察、季節的消長について、東京都環境科学研究所年報1991-2、p.246-258。
4）門司正三、高井康雄：陸水と人間活動、東京大学出版会、p.61-63（1984）。
5）東京都環境保全局：平成3年度清流復活事業に伴う水質調査委託報告書、p.19-25（1992）。
6）（財）日本食品分析センター：試験報告書－第05-71103 09-1,3（1978）。
7）水関功：オゾン利用水処理技術、公害対策技術同友会、p.14-15、83-87（1989）。
8）平田強：オゾンの消毒効果、用水と廃水、34、p.331-335（1992）。
9）浦辺正子ら：清流復活に関する研究（その7）昭和62年度玉川上水水質調査結果、東京都環境科学研究所年報1989、p.142-148。
10）福岡信吾：水質の回復が河川環境群集に及ぼす影響、横浜市環境科学研究所報、16、p.23-36（1992）。
Effect of PAC (poly aluminium chloride) treatment and ozone treatment on chironomid larvae communities

Masahiko Ohno, Tetsuhito Komeiji

The Tamagawa-Josui canal, Nobidome-Yosui canal, Senkama-Josui canals rise from the effluent of the Tamagawa Joryu Sewerage Plant. The plant began to apply ozone treatment (injection rate: $3 \text{mg} / \ell$) for decoloration and deodorization of the effluent in April 1991. It also applied PAC (poly aluminium chloride) treatment (injection rate: $8 \text{mg} / \ell$) for reduction of phosphorus in the effluent at the same time. After the treatments, chironomid larvae population and its community diversity gradually decreased at an upper sampling station (Tamagawa-Josui outlet) which was 8.7km distant from the plant.

*Glyptotendipes tokunagai*, which had been dominant since 1986, was scarcely found there. On the contrary, chironomid communities did not change largely at the lower three stations of the canals (15.2–26.2km distant from the plant). PAC was not regarded as a lethal substance to chironomid larvae. The ozone treatment was considered to decline the chironomid community at the upper station. It was also supposed that the treatment did not have large effect on the chironomid communities in the lower regions because of reduction (disappearance) of ozone or its derivatives in water.