論 文

都 内 の ア ス ベ ス ト 硫 化

渡 邊 正 春 藤 田 秀 裕 富 塚 秀 秀
朝 来 野 国 彦 谷 本 秀 一 吉 野 昇
(大気保全部大気規制課)

要 旨

大気環境中のアスベスト濃度を、広域的に把握するため、昭和63年度～平成4年度の5年間にわたって都内の一般地域、道路沿道、埋立処分場周辺及び対照地の同一地点で、毎年2回調査した。

光学顕微鏡法（繊維長5μm以上を計数対象とする）によるアスベスト濃度範囲は0～2.10/ℓ、電子顕微鏡法（全ての繊維長を計数対象とする）での濃度範囲は、ND～93.24/ℓ。一般地域に比べて道路沿道の方がアスベスト濃度は高く、繊維長5μm未満のアスベスト繊維が多かった。これは、自動車のブレーキ操作の際に、摩擦材の摩耗と共に微量のアスベストが排出するためである。

道路沿道では、道路側を風上とする弱風（3m/sec程度以下）の時に、繊維長5μm未満のアスベスト濃度が高い傾向にあった。

また、自動車排出ガス由来の大気汚染物質は、交通量との関連性が高いが、アスベストの場合には、交通量との相関性は少なかった。なお、昭和63年の新車は、新車からブレーキパッドを除くすべての100％代替品に転換しており、自動車から排出するアスベストは、今後さらに低減するものと考えられる。

埋立処分場周辺でのアスベスト濃度は、道路沿道と同レベルであった。

1 はじめに

アスベストは工業、建築等の分野では優れた原料として、重要視されているが、大気環境では、アスベストの飛散が問題となるような事態があった。特に、吹付けアスベスト撤去の際には、その飛散が顕著であった。著者らは、吹付けアスベスト撤去においては、飛散防止対策を検討する必要があると報告した。

本報では、大気環境中のアスベスト濃度の測定を広域的に把握し、アスベスト濃度と大気中浮遊粉じん濃度、気象条件等との関連を検討した。

道路沿道では、自動車排出ガスと共に摩擦材料のアスベスト撤去が懸念されているが、昭和63年は、新車及大型トラック等の磨耗材は100％代替品に転換しており、大型車（トラック、バス等）は平成6年度までには100％代替を目途に転換中である。

摩擦材のアスベスト代替品には、セミメタリック系とアラミド繊維ローラウォール系の2系統がある。

セミメタリック系はスチール繊維を主原料とし、ディスクパッドに使用されている。

アラミド繊維・ローラウォール系は、ブレーキライニングに使用されており、アラミド繊維（酸化ポリアミド繊維）、炭素繊維、または岩棉（ロックウール）、チタン酸カリウム繊維等を原料とし、フェノール系樹脂結合剤等で成形されている。

今後の使用過程の低減（新車への転換）により、摩擦材料由来のアスベスト濃度は段階的に低減するものと考えられる。

2 調査期間

(1)立地特性別調査

調査は、昭和63年度～平成4年度各年度とも前期（8月～10月）後期（11月～12月）の2期に行った。

ただし、平成3年度には、12月と2月中旬～3月中旬の2期に行った。

(2)その他の調査

ア. 昭和60年から毎月中旬に調査（一般環境）

イ. 昭和60年から毎年調査（処分場周辺）

東京都環境科学研究研究所 昭和63年
ウ. 平成3年10月（海洋性バックグラウンド）

3. 調査方法

図1. 調査地点

(1) 地点

① 一般環境10地点（区内6地点、多摩4地点）
② 道路沿道2地点（幹線道路沿線3、高速道路沿線）
③ 対照地1点

計17地点

(2) 調査方法

ア. 一般環境3地点（区内2地点、多摩1地点）
イ. 処分場周辺1地点（区内1地点）
ウ. 海洋性バックグラウンド1地点（小笠原島内3地点及び太平洋航行船上1回）

(2) 調査項目

① アスペスト繊維濃度（位相差光学顕微鏡を用いる繊維濃度測定法：以下「PCM法」という）および分析電子顕微鏡を用いる繊維濃度測定法：以下「AEM法」という。

② 気象条件、交通量等関連事項

(3) 試料採取方法

① 採取時間および採気量

試料の採取は、メンブランフィルター（47φ、孔径0.8μm）をオープンフェースのフィルターホルダーに装着して、平日の10時から14時まで（毎分10ℓ/min、合計2,400ℓ）ローポリュームエアサンプラーにより採取した。

② 採取条件

測定点が一般地域、対照地の場合には、ろ紙の採葉面を主風向に向けて採取し、道路地域の場合には、ろ紙の採葉面を最も近い道路方向に向けて採取した。

③ 道路環境の交差点では、通り自動車排出ガスの影響を考慮して1時間毎に4回取り替えた（ただし、平成2年度の交差点における採気量と、平成3年度前期の道路環境での採気量は1,200ℓ：2時間とした）。

(4) 計數方法

計数方法は、PCM法による方法に従った。

また、① 原本作成方法 ② アスペスト濃度（PCM濃度）の計数は、アスペストモニタリングマニュアルのとおり行った。

AEM法では、MAXTAFORM社のN1シートメッシュ（200メッシュ）1網目は100μm×100μmを用い、繊維状物質の汚染状態には、倍率×6,000で30から60個の網目毎のアスペストを一本毎に、繊維長と径を計測した。

アスペストの同定には、AEM装置の機能として内蔵する① 繊維の形態、② 電子成分分析X線スペクトル（Energy Disperve Sectorscopy：以下「EDS」という）による元素分析、③ 電子顕微鏡像の3要素を適宜組み合わせて判断する方法を用いた。

次いで、ランダムに5地点の網目を選び、倍率3万倍で外網目の中の中継を観察し、アスペストの場合には、示し用意したシートメッシュ拡大図上に一本ずつ繊維長と径を記入した。

アスペスト濃度（AEM法）の計数は、アスペストモニタリングマニュアルに準拠して行った。

立地区分

一般地域の立地区分は、住居系：6地点（白金住宅、世田谷区役所、石神井公園、中町出張所、葛飾区役所、農業高校神代農場、小平市中央公民館）、工業系：1地点（練谷保健所）、商業系：2地点（町田市役所、立川合同庁舎）とした。

道路沿道は幹線道路に面した日比谷、豊玉、野口橋の3地点を幹線道路沿道。高速道路に面した大原、上戸、大和の3地点を高速道路沿道とした。

また、山間地域で人為的なアスペストの影響が少ないと思われる松原村を対照地とした。

4. 調査結果

(1) PCM法による調査結果

1) 調査地点別アスペスト濃度
①一般地域（10地点）
一般地域は昭和63年から平成4年まで、5年間の濃度範囲は0～2.10f/gであった。
一般地域は地質特性別に住居、商業、工業の3地域に分けると、調査年度により若干の差異はあるが、住居・
商業・工業地域の間で僅かな濃度差があった。
②道路環境（6地点）
道路環境での濃度範囲は0.04～1.95f/gであった（表1）。

<table>
<thead>
<tr>
<th>地域</th>
<th>区分</th>
<th>昭和63年度～平成4年度濃度範囲（f/g）</th>
<th>最小～最高</th>
<th>平均～平均</th>
<th>養殖平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般地域(n=360)</td>
<td></td>
<td>0.00～2.10</td>
<td>0.00</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>住居</td>
<td></td>
<td>0.00～1.44</td>
<td>0.00</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>商業</td>
<td></td>
<td>0.04～0.73</td>
<td>0.04</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>工業</td>
<td></td>
<td>0.10～2.10</td>
<td>0.10</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>道路環境(n=360)</td>
<td></td>
<td>0.00～1.95</td>
<td>0.00</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>沿道</td>
<td></td>
<td>0.00～1.95</td>
<td>0.00</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>交差点</td>
<td></td>
<td>0.00～1.22</td>
<td>0.00</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>対岸地(n=30)</td>
<td></td>
<td>0.00～0.61</td>
<td>0.00</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>工場（区内）</td>
<td></td>
<td>0.00～0.36</td>
<td>0.00</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>住居（区間）</td>
<td></td>
<td>0.00～0.10</td>
<td>0.00</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>住居（近接）</td>
<td></td>
<td>0.00～1.17</td>
<td>0.00</td>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>

注)下3欄は勿論全て60

全般的に道路地域は、一般地域よりもアスペクト濃度は高かったが、交差点と後背地とは、後背地の方がや
や低く、幹線道路と市街地道路とは、幹線道路の方がわずかな濃度差があった。（表2）
③一般環境儲水棟の3地点
濃度範囲は昭和63年0～1.36f/g（年度別平均では0.07～0.47
f/g）であった。
濃度の傾向は、衛生衛生施設（新宿東）<多摩調査所（多摩市）<環科研（江東区）であるが、近年は、全地点とも
わずかながら低減化の傾向にある。

④埋立処分場周辺
昭和63年、平成3年度及び5年度の濃度範囲は、
0.18～4.34f/gである。平成3年度は、0.27～1.01f/gである
が、近年は低減化傾向である（表3）。

<table>
<thead>
<tr>
<th>埋立処分場周辺（PCF）</th>
<th></th>
<th></th>
<th>平成3年度</th>
<th>平成5年度</th>
<th>平成3年</th>
</tr>
</thead>
<tbody>
<tr>
<td>埋立処分場周辺（昭和63年）</td>
<td></td>
<td></td>
<td>0.07</td>
<td>1.25</td>
<td>0.19</td>
</tr>
<tr>
<td>埋立処分場周辺（平成3年）</td>
<td></td>
<td></td>
<td>0.04</td>
<td>0.67</td>
<td>0.08</td>
</tr>
</tbody>
</table>

⑤対照地点
内陸地の対照地（塩原）
塩原測定局における測定範囲は、0～0.6f/g（年平
均濃度は0.03～0.27f/g）であった（表1）。

⑥海洋性の対照地（小笠原島）
父島（3地点）における測定範囲は、0～0.55f/g
（年平均濃度は0～0.14f/g）（詳細結果を含む）（表4）。

<table>
<thead>
<tr>
<th>海洋性の対照地（小笠原島）</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>父島（3地点）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⑦太平洋上の濃度
昭和62年10月6日16時4分～7日12時45分（鳥島沖東
南120Km～御蔵島沖40Km）において測定した結果アス
ペクト濃度を検出したかった。
海洋性の対照地でも、内陸の対照地と同様に低いアス
ペクト濃度であった。

東京都環境科学研究所年報 1993
2) アスベスト濃度と浮遊粒子状物質濃度（以下SPM濃度という）、気象（風向・風速）との関連性

平成4年度の測定結果にもとづいて検討した（表5、表6）。

表5 一般地域（PCF法）

<table>
<thead>
<tr>
<th>地点</th>
<th>SPM濃度</th>
<th>風向</th>
<th>風速</th>
</tr>
</thead>
<tbody>
<tr>
<td>砂谷保健所（8/10〜8/12）</td>
<td>0.04 0.78 2.10</td>
<td>E 1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>地点</td>
<td>SPM濃度</td>
<td>風向</td>
<td>風速</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>砂谷保健所（12/5〜12/11）</td>
<td>0.44 0.30 0.59</td>
<td>NE 1.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

表6 道路沿道（PCF法）

<table>
<thead>
<tr>
<th>地点</th>
<th>SPM濃度</th>
<th>風向</th>
<th>風速</th>
</tr>
</thead>
<tbody>
<tr>
<td>大和町交差点（8/10〜8/12）</td>
<td>0.10 0.65 0.29</td>
<td>NE 1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>大和町交差点（12/5〜12/11）</td>
<td>0.44 0.30 0.59</td>
<td>NE 1.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SPM濃度が100μg/m3を超える日のSPM濃度とアスベスト濃度を比較検討した結果、砂谷保健所（12/10）
神代農場（12/16, 12/17）、大和町交差点（8/6, 12/1）
では、高濃度のSPMであってもアスベストは低い濃度であった。

道路近傍におけるSPMは、自動車排出ガスに起因するので、交通量（特にディーゼル車）との関連性が高か、
微弱風の場合は、拡散し難しい方に濃度が高くなりやすい。しかししながら、自動車排出源である時のアスベスト粒子を
は、ブレーキ操作の仕方で飛散量が変化することから、
交通量との直接的な関係は少ない。

次に、風向との関係では、道路から測定点方向に微弱
風が吹く場合には、高いアスベスト濃度になることもある（大原30m：8/11, 8/12, 12/10）が明確ではなかった。

結論は次のとおりである。

①一般環境及び道路沿道では、SPM濃度とアスベスト濃度（PCF法）には直接の相関はなかった。
②風向との関連性は明らかではなかった。
③交通量とアスベスト濃度には、直接的な相関はなかった。

(2) AEMによる調査結果

平成2年度に調査した交通量、PCF法によるアスベスト濃度を表1にまとめた。
さらに、AEM法で調査したものと同一の試料を用いて、AEM法によりアスベスト濃度を求めた（表8）。

図3 大和町交差点

図2 大原交差点
表7 平成2年度道路において、交通量とアスベスト濃度（PCM法）

<table>
<thead>
<tr>
<th>地点</th>
<th>交通量（ha/日）</th>
<th>小型車</th>
<th>大型車</th>
<th>総合</th>
<th>5%分幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>ミサワ</td>
<td>10/1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>10/2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>トウ</td>
<td>10/3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

表8 大気中アスベスト濃度（AEM法）

<table>
<thead>
<tr>
<th>地点</th>
<th>前期</th>
<th>期間</th>
<th>後期</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.61</td>
<td>64.75</td>
<td>1.68</td>
<td>17.06</td>
</tr>
<tr>
<td>B</td>
<td>2.54</td>
<td>33.90</td>
<td>2.10</td>
<td>8.83</td>
</tr>
</tbody>
</table>

図4 日比谷交差点

対照地の検定において、9/6, 11/8、⑦太平洋航路中（H3 10/6）

1) 維繊長5μm以上のアスベスト

表9 PM5の濃度

<table>
<thead>
<tr>
<th>地点</th>
<th>前期</th>
<th>期間</th>
<th>後期</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.61</td>
<td>64.75</td>
<td>1.68</td>
<td>17.06</td>
</tr>
<tr>
<td>B</td>
<td>2.54</td>
<td>33.90</td>
<td>2.10</td>
<td>8.83</td>
</tr>
</tbody>
</table>

注意
1 道路側が風上又は道路に並行の風向は無印
2 道路側が風下の時は下記の留数による

調査対象は、道路沿道のA交差点（図4）日比谷交差点及び30m地点（10/1、12/3）②B交差点：大和町交差点及び30m地点（9/4、11/7）③C交差点及び30m地点
一般環境：D工場専用、環境科学研究所（8/17、11/20）E住居：衛生研究所（8/17、11/15）

東京都環境科学研究所 平成11年
20％、対照地では30％であった。
3）太平洋上流地区のアスベスト濃度はNDであったが、S-Caを含有する有機繊維の繊維長5μm前後の粒子が多数あった。

5 まとめ
(1) 走行環境で検出された繊維長5μm以上を計測するPCF法でのアスベスト濃度範囲は0～2.10μg/Lであり、一般地域の平均濃度は0.23μg/L、道路沿道は0.36μg/Lで、道路沿道の方が若干高かった。
(2) AEM法では明らかではなかったが、AEM法（繊維長5μm未満）の道路沿道でのアスベスト濃度は、一般環境に比べて高く、自動車ブレーキ由来のアスベストによる影響が認められた。
(3) 道路地域では、繊維長5μm未満の微小アスベストが圧倒的に多く、全地点とともに計測したアスベストの72％以上を占めていた。さらに、2μm未満のアスベストが全体の70％を占めていた。
(4) AEM法による組成分析から、アスベストの他に、S-Ca系、ロッカーウール、ガラス繊維、Si-Ca系等多様な繊維状物質を検出した。この様々な繊維状物質の多様化は、代替品の進捗により、今後も続くものと考えられる。
(5) 道路地域のアスベスト濃度は、5年間ほぼ、同一レベル内にあったが、一般環境環境モニタリング（3地点）のアスベスト濃度は僅かながら、漸減化傾向が認められた（表2）。

この調査は、PCF法により全試料のアスベスト濃度計数を行い、一部の試料については、PCF法とAEM法とで検討した。PCF法は、試料中の繊維長5μm以上
のアスベストを短時間で定量出来る。迅速に定量できる
ことは、環境管理上重要なものである。

AEM法は、迅速な定量よりは、繊維状物質の正確な
識別（形状確認、構成金属元素分析、電子顕微鏡）機能
を有する。この機能により、PCF法では検出困難な繊
維長5μm未満の微小アスベスト並びに、アスベスト
に類似する繊維状物質についての情報が得られる。

今後、AEM法を活用したPCF法の精度管理システム
を早急に確立したい。

参考文献
1）渡邉武幸・朝来野哲彦：大型車から排出するアスペ
スト粉じんについて、東京都環境科学研究所年報1987、
P92-98。
2）渡邉武幸：増設開発時の大気汚染防止対策とその
効果について、東京都環境科学研究所年報1992、P62
-66。
3）環境庁：モニタリングマニュアル（1985）。

Asbestos Concentration in Tokyo
Takeharu Watanabe, Hiroki Kamataki, Kaoru Akiyama
Kunihiko Asakuma • Hidekazu Adachi and • Noboru Yoshino
• Air Quality Protection Division Air Control Section

Abstract
To seize widely asbestos concentration in atomospher, in Tokyo, general area, road-side, circumference of reclaimed land, and comparison area were had researched twice a year for five years (1988-1992).

Asbestos concentration by measurement method of optical microscope (counted fiber length of upper5μm) was 0-2.10 μg/L and by electron microscope(counted all size fiber length) it was ND-93.248μg/L. Asbestos concentration on road-side was higher than it of general area, and asbestos fiber existed many lower 5 μm fibers than upper. It is that a little asbestos is
exhausted from rubbing material when automobiles are braking.

On road-side, asbestos concentration of lower 5 μm fiber was inclined to be high, when wind from a road was weak (lower about 3m/sec.).

And air pollutants of exhaust gas by vehicle source are high correlative for traffic, but asbestos is little correlative for it. As brake pad and lining of automobiles produced from 1992 were changed 100% from asbestos to substitutions, it’s concentration by automobile’s source will decrease in future.

Asbestos concentration of circumference of reclaimed land was as same level as it of road-side.