スギ、コナラの林内雨、樹幹流の性質について（1）
-pH、電気伝導度、イオン成分濃度-

菅 邦子 大橋 慎 古明地 哲人
渡辺 琢美 青木 一幸 栗田 宏子
小 山 功*（*現多摩環境保全事務所）

要 旨
著者らは、酸性雨が都市の植生に及ぼす影響を総合的に把握するため都市近郊にバイロットフィールドを設定し、1993年から調査を実施してきた。その一環として、都市近郊のスギ及びコナラ林への酸性雨降下量を見積もり、樹木への影響を把握することを目的として林内雨、樹幹流を採取し、その成分濃度について樹種特性、季節変化、成分間の関係等につき基礎的な検討を行った。

(1) 林内雨降水量および樹幹流降水量（採取量を樹冠投影面積で除した値）は、ともにコナラの方がスギよりも多かった。スギでは林内雨と樹幹流の降水量の和が林外雨降水量の約50％、コナラでは約70％であった。樹幹流の降水量はスギ、コナラとも林外雨の1％未満で少なかった。

(2) コナラの林内雨は、林外雨の降水量に比例して直線的に増加するが、増加率は著しく、スギ林内雨では降水量40mm未満では緩やかでその後增加率が大きくなった。樹幹流でも同様の傾向があり、この違いは被覆物と常緑樹の違いや葉の構造及び樹形等の相違によると考えられた。

(3) pHの最頻値は、武蔵野測定局、林外雨、スギ林内雨、及びコナラ樹幹流ではpH4.4～4.8の間にありほぼ同じレベルであった。コナラ林内雨はpH6.0～6.2で高く、スギ樹幹流ではpH3.4～3.6で非常に低かった。

(4) 年平均値を比較するとECでは、スギ、コナラとも明らかに林外雨＜林内雨＜樹幹流であった。コナラのpHは、林内雨＞林外雨＞樹幹流の関係が見られ、スギでは（林外雨、林内雨）＞＞樹幹流であった。

イオン成分濃度の年平均値は林外雨＜林内雨＜樹幹流の順であった。

(5) 林外雨ではH⁺濃度が春一夏に低く、春先と秋に高くなる傾向がみられた。K⁺は、春先と秋に濃度が高い傾向があった。スギ林内雨ではK⁺が春～初夏にかけ濃度が高く、秋～冬に濃度が低くなる特徴がみられた。コナラ林内雨では、1～3月頃のK⁺濃度が低い特徴があった。

スギ林内雨のNO₃⁻／SO₄²⁻比は夏に高く冬に低くなり、横浜のヒノキと同様季節変動を示した。

(6) 陽イオン、陰イオンの総当量濃度に対する各イオンの当量濃度比率（当量比）について検討した。その結果、林外雨では生長期と休眠期でイオンの種類によって当量比に明確な差が認められた。陰イオンでは、林内雨と樹幹流の当量比の季節的な相違は林外雨のパターンと似ていた。陽イオンでは季節的な変動は陰イオンより大きいが、スギとコナラとの間及び、林内雨と樹幹流との間の当量比のパターンに陰イオンより大きな相違が認められた。つまり、降水量と樹木に接触するときの成分組成の変化は、陽イオンで大きく陰イオンで小さいと言えることができる。その理由は、おそらく葉表面及び樹皮における溶出、吸収などの陽イオンの交換反応によるものと考えられる。
Ionic Components in Throughfall and Stemflow Water Collected from *Cryptomeria japonica* and *Quercus serrata*

Kuniko Suga, Takeshi Ohashi, Tetsuhito Komeiji
Takumi Watanabe, Kazuyuki Aoki, Keiko Kurita
and Isao Koyama*
*Tama Environmental Protection Office

Summary

We have investigated the deposition onto the stands of *Cryptomeria japonica* and *Quercus serrata* at Mitaka city by the analysis of ionic components in the water collected from bulk precipitation, throughfall and stemflow during April 1993 to May 1994.

Volume ratio of throughfall to bulk precipitation was 50% for *C. japonica* and 70% for *Q. serrata*. Throughfall and stemflow volume of *C. japonica* were clearly larger than those of *Q. serrata*. But at the initial stage of rain fall, sample volume collected from *C. japonica* was much smaller than that from *Q. serrata*.

Throughfall and stemflow pH values of *Q. serrata* were always higher than those of *C. japonica*. The most frequency range of throughfall pH values were 4.6-4.8 for *C. japonica* and 6.0-6.2 for *Q. serrata*, respectively.

Annual average values of electric conductivity (EC) for these water were in the following order:

bulk precipitation < throughfall < stemflow,

and for the pH values

bulk precipitation = throughfall > stemflow.

The seasonal variation of concentrations of several ionic species had following tendency:

1. The pH values of bulk precipitation in spring to summer were lower than those in early spring and autumn.
2. The concentration of K⁺ in *C. japonica* throughfall in spring and early summer, were higher than those in autumn and winter.
3. The K⁺ concentration in *Q. serrata* throughfall had minimum values during Jan.-May.

Concentrations of other ionic species did not show a clear seasonal variation due to the large scattering of these data values.

The ratio of the concentration of nitrate ion to that of sulphate ion (\([\text{NO}_3^-]/[\text{SO}_4^{2-}]\)) in *C. japonica* throughfall in summer was higher than those in winter. *Chamaecyparis obtusa* throughfall in Yokohama had the similar tendency to our results for seasonal variation of ratio.

The percent ratio of average equivalent concentration for each component cation or anion to the total average equivalent concentration of cations or anions were evaluated for an growing season (April to October) or a dormant season (November to March) of plants. For the bulk precipotation, there was a clear difference between the values of the ratio in two seasons for almost all ionic species. For anionic species, the difference pattern of the values of the ratio for throughfall and stemflow were similar to that for bulk precipitation. The difference between the values of the ratio of cationic species for throughfall and stemflow or that for *C. japonica* and *Q. serrata* were larger than those of anionic species. This result suggests that the amount of ion-exchanged cations on leaves or stem of plants are larger than that for anions.
1 はじめに

ヨーロッパや北アメリカでは、1985年頃から湖沼の生態系の異常や森林の衰退が認められ、その原因の一つとして酸性雨の影響について検討されている1-3)。

我が国4)でも、福岡県の豊浦市のモミ5)、群馬県の赤城山のダケカンバ6,7), 神奈川県大山のモミ6,9)等のように森林の衰退についての報告が目だってきている。

また都市近郊平野部のスギの衰退が、群馬県8, 神奈川県9)や東京都10)をはじめ日本各地で認められている10). スギ衰退の原因については、酸性雨による影響を含めて調査研究が進められており、2, 3 の仮説が提出されている。しかし、まだスギの衰退現象を総合的に説明するには至っていない11,12,13,14).

当研究所では、1993年から酸性雨が水木、植生、土壌、土壌小動物、器物などに与える影響について酸性雨総合調査を実施している。この一環として、著者らは都市周辺のスギ林への酸性物質の負荷量を見積り、樹木に対する影響の大きさを把握することを目的として三島市内にバイオリンフィールドを設定し、大気、降水中、樹木葉、土壌、渓水等の成分分析を行った。

本報告はこれらのうち、スギ林及びコナラ林の林内雨、樹幹径成層観察の樹種特性や季節変化、各成分相の関係について基礎的な検討を行ったものである。

2 調査方法および分析方法

2.1 調査地点の概要

調査は三島市大沢にある国際キリスト教大学（ICU）域内で行った。この場所は国分寺跡園にあたり、都立野川公園に隣接している。大学域内は、かなり自然の状態がよく保存され、合土地にはコナラ・クヌキ林やアカシア・イヌザを含む。また、この地域の湿原植物のスギノキも見られた。スギクやツツジやツツジの面積も多く存在した。

採取地点の全要は図1に示したように、高低差約15m、斜面15°～20°程度の斜面で、斜面上のスギ林はNI4m長さ70cm、コナラ林はNI35m長さ100cm以上であった。

林外雨採取地点は、北東斜面からの渓水で流れる直径30cm以上の水底面の中央に設置した。林外雨採取口の高さは約80cm、採取口からみた周辺樹木の仰角は基準点で約55°であった。この点は環境水測定マニュアルによる降雨採取地点としての条件には合致しなかったが、
（2）調査期間及び調査樹木

調査期間及び調査樹木を表2、調査樹木の周辺状況を図2～図4に示した。

本調査地点のスギ林の生育状態はほぼ同じレベルで、先端の枯れはなかったが全体の樹形は多少乱れており、正常な生育状態よりやや悪いと判断された。調査木の胸高直径は本調査地点の平均より大きく、樹勢は平均的なものであった。コナラについても、コナラ林の中ではやや直径が大きく、樹勢は平均的な個体を調査木とした。
なお、スギとコナラの比較には1994年5月～1995年4月の1年間のデータを用いた。

<table>
<thead>
<tr>
<th>表2 調査期間および調査樹木</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>調査期間</td>
</tr>
<tr>
<td>胸高直径</td>
</tr>
<tr>
<td>樹高</td>
</tr>
<tr>
<td>樹勢</td>
</tr>
<tr>
<td>被覆</td>
</tr>
<tr>
<td>冠の大きさ</td>
</tr>
<tr>
<td>半径面積</td>
</tr>
<tr>
<td>木株数</td>
</tr>
<tr>
<td>中木層</td>
</tr>
</tbody>
</table>

図2 調査地点スギ1

図3 調査地点スギ2

図4 調査地点コナラ

（3）採取方法

林外雨、林内雨、樹幹流の採取方法を以下に示した。

林外雨

写真1に示すような雨水簡易採取装置（採取面積160㎡、5ℓのポリ容器）を設置し、雨水を採取した。採取器の上部と下部の間に0.8μのメンプランフィルターをいれた。採取口の高さは約80cmとした。

林内雨

林外雨と同様の採取器を樹冠下に1か所設置して林内雨を採取した。採取位置を決めるにあたっては、①調査木以外のスギ、コブシ、タカオカエデ等、中木の樹冠に覆われず、②調査木の大きな枝の下を避け、③対象
樹木の葉が多いなど総合的に最も適切と思われる位置を選定した。なお、本調査では、このような条件を満たす位置はごく限られていた。

ウ 樹幹流

写真2に示すように佐々^{29}の方式に従い、樹幹にガーゼを巻き付けその先端を20ℓのポリタンクに導入した。

ポリタンクは2個連結した。ガーゼは、日本薬剤方に定められたものを蒸留水で30分間煮沸し、十分にイオン交換水で洗浄したものを利用。使用した長さは10mで、四通に流れた後巻き付け、2か月に1回交換した。

なお、ガーゼ法は降水強度が大きいときに完全に採水されない可能性があるが、樹皮を破れない利点と、コーティング剤の影響を受けない利点を持つ。このためガーゼ法を採用した。

(4) 分析項目及び分析方法

分析項目、分析方法は表3に示したとおりである。イオンクロマトグラフィーにかける試料は、分析前にディスバブルフィルターで0.45μm以上の粒子を除去した。

3 調査結果と考察

(1) 武蔵野測定局とICU林外雨との関係

ICUから東京へ約4kmに位置する武蔵野一般大気測定局には、酸性雨自動測定機（小室原計器C-U299型）が設置されており、乾性と湿性の降水物を別々採取し、PH、ECについては5mm等価水束的自動測定をしている。ICUとは採取法や採取期間が異なるが、武蔵野測定局の降水データ（以後、武蔵野という）とICU林外雨との関係を検討した。その結果、ICU林外雨は武蔵野の降水と比べてK⁺、Mg²⁺の濃度が春、秋に高いことと、周辺の植物の影響を受けていることが確認された。そこで、以下のICUの結果を検討するにあたっては武蔵野のデータもあわせて比較することとした。

なお、武蔵野のデータは半分毎に整理したものを利用した。採取期がICUとは完全に一致しないので、詳細な検討は次回に行うこととした。本報告ではおよそのレベルについてふれることとした。

(2) 林外雨、林内雨及び樹幹流の降水

ア 降水量の季節変化

林外雨の降水量の変化は図5のとおりである。1993年の梅雨期は非常に降水量が多く冷夏であったが、1994年は空梅雨で夏は降水量が少なく極端に異なる2年間である。
った。

イ 降水量順位分布
スギ林内雨の降水量順位分布は0－10mmにピークがあった。樹幹流では図6に示したように0－0.1mmの数の低い範囲にそのほとんどが分布していた。コブラではほぼ同じ形を示したが、やや広い分布であった。

ウ 採取源ごとの林外雨、林内雨、樹幹流降水量
図7に採取源ごとの林外雨と林内雨の降水量の関係を示した。コブラでは、林外雨降水量が约4mmで、樹幹流は40mmまでは直線的に林内雨が増加しその後やや横ばいになった。一方スギでは林外雨量が6mmになると林内雨が採取され、10mm降水中は必ず林内雨が採取されるようになった。その後降水量40mm位までは林内雨の増加率が緩やかで40mmを超えると林内雨の増加率が大きくなくなるという特徴があった。

図5 林外雨降水量変化

図7 林外雨と林内雨の関係

樹幹流についても同じで、コブラでは6mm降水中樹幹流が採取され、林外雨に比例して直線的に樹幹流が増加するのに対し、スギでは林外雨が15mmになると樹幹流がこれほど、降水量40mmまでは採取できなかった。

表4 年降水量、EC・pH（年平均値）と林外雨の降水量比

<table>
<thead>
<tr>
<th>調査期間</th>
<th>試料</th>
<th>年降水量 (mm)</th>
<th>EC (μg/cm²)</th>
<th>pH</th>
<th>降水量比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993.5～1994.4</td>
<td>林外雨</td>
<td>1375</td>
<td>16</td>
<td>4.83</td>
<td>100.0</td>
</tr>
<tr>
<td>1994.5～1995.4</td>
<td>林外雨</td>
<td>1224</td>
<td>25</td>
<td>4.61</td>
<td>100.0</td>
</tr>
<tr>
<td>1995.4</td>
<td>林内雨1</td>
<td>615</td>
<td>131</td>
<td>5.10</td>
<td>50.2</td>
</tr>
<tr>
<td>1994.4</td>
<td>林内雨2</td>
<td>560</td>
<td>269</td>
<td>4.19</td>
<td>45.7</td>
</tr>
<tr>
<td>1993.5</td>
<td>林内雨</td>
<td>855</td>
<td>42</td>
<td>5.16</td>
<td>72.3</td>
</tr>
<tr>
<td>1994.4</td>
<td>樹幹流1</td>
<td>3.4</td>
<td>493</td>
<td>3.28</td>
<td>0.3</td>
</tr>
<tr>
<td>1995.3</td>
<td>樹幹流2</td>
<td>6</td>
<td>479</td>
<td>3.41</td>
<td>0.5</td>
</tr>
<tr>
<td>1993.5</td>
<td>樹幹流</td>
<td>10</td>
<td>113</td>
<td>4.58</td>
<td>0.8</td>
</tr>
</tbody>
</table>

注）試料の武蔵野は、武蔵野測定局を示す。武蔵野の測定値は、上段が1994.4－1995.3、下段は1993.4－1994.3の期間を用いた。
たりし、40mmを越えると急に採取量が直線的に増加して
いた。

２年降水量と林外雨に対する降水量比

次に年間降水量（mm、1994.04～95.05）及び林外雨に対
する降水量比率を表4に示した。

林外雨の年降水量は122.4mmで武蔵野の981mmと比べて
約30％多かった。これは、採取法や採取期間、採取間隔
及び周辺環境等の相違のためと思われる。林内雨と樹幹
流の降水量（mm）は採取量を採取面積で除したものですのである。
なお、樹幹流の採取面積は土壌樹冠投影面積を用いた。

林外雨に対する林内雨、樹幹流の比率は前に触れた採
取期ごとの降水比率と同じように年降水量でもスギより
コナラの方が大きかった。林内雨／林外雨ではスギ約50
％、コナラ約70％、樹幹流／林外雨ではスギ0.3～0.5％、
コナラ0.8％であった。

つまり、スギの樹冠に降る雨は、年間を通してみると
降水量の約半分が葉、枝、幹に付着したまま蒸発し失われ
ることを示している。

コナラはスギより降水を遮断する量が少ないと、その
理由としては、常緑樹と常緑樹の違い、葉面積の相違、
葉の構造や枝振り及び樹形の違い等が考えられる。樹幹
流では、これらに加えて樹皮の構造による保水性の相違
も考慮に入れる必要がある。

なお、落葉樹のコナラでは5月から10月にかけての落
葉期に林内雨／林外雨及び樹幹流／林外雨の比が小さく
なかったが、常緑樹のスギでは季節的な傾向は認められな
かった。

静岡県22)29)の報告と比較すると孤立木では林内雨、樹
幹流とも我々の結果とは同じ結果を示していた。しか
しスギ森林地帯では、林内雨／林外雨の割合は約67％、
樹幹流／林外雨の割合は約5％であり、我々の結果より
大きな値を示した。この相違は、ICU調査地点のスギ
林は篠で中木層が発達し下草植生が豊富であるなど、人
工造林によるスギ林に比べてかなり異なる条件にあるた
めであろう。なお、樹幹流の採取はガーゼ法によったた
め降雨強度が高い時に樹幹流の全量が捕集されなかった
可能性も考えられる。

３）林外雨、林内雨、樹幹流のpH及びEC

ア pHとECの頻度分布

pHの頻度分布は、武蔵野ではpH4.4～4.6間に大きな
ピークがあり、大部分はpH4.0～5.4の間にあるものの幅

図8 樹幹流のpH頻度分布

が長い分布形をしていた。林外雨はpH4.4～4.8、スギ
林内雨はpH4.5～4.8、コナラ林内雨はpH6.0～6.2に
pHの最頻値があった。図8に樹幹流のpHの頻度分布を
示した。スギとコナラではpHの分布形にずれがみられ、
明らかにスギ樹幹流のpHが低かった。

ECの頻度分布を図9に示した。林外雨ではECが小
さいところに大部分のデータが集中しており、武蔵野の
EC分布はほぼ林外雨と同じであった。

スギの林内雨ECは林外雨よりやや高く広い範囲に集
まっていた。コナラはスギのECより明らかに低い範囲
に分布していた。樹幹流の場合も林内雨と同様、コナラ
のECは小さく狭い範囲に分布していた。コナラの降水
量は林内雨、樹幹流ともスギに比べて明らかに多く、希
釈効果が大きいことがECが小さくなる一つの理由であ
らう。

イ pHとECの関係

図10に林外雨、林内雨、樹幹流のECとpHの関係を示
ウ pHとECの年平均値の特徴

表4に林外雨、林内雨、樹幹流のpHとECの年平均値を示した。スギ、コナラともECについては、林外く林内く樹幹流の順に値が大きくなった。一方pHに関しては、コナラでは、林内雨く林外雨く樹幹流の順になった。スギの林内雨pHは年及び個体により異なり、林外雨に対して一定の傾向を示さなかったが、スギの樹幹流pHは常に最も低く、変動が少なかった。

これらの結果を静岡県（1988、89年）のスギ調査と比較すると、本調査の林内雨のECは高め、樹幹流のECもかなり高めであった。pHについては、林内雨、樹幹流とも静岡市内よりかなり低くなる傾向がみられた。

これは、調査年の相違もあるが生育地域の違いが大きいと思われる。なお、静岡県のスギのpHは林外雨=林内雨く樹幹流であった。

エ 林外雨降水量とpH、ECの関係

図11に林外雨降水量とpH、ECの関係を示した。

林外雨、林内雨とも林外雨の降水量が大きくなると、スギではECは15、pHは4.5の値に収束した。なお、コナラではECは20〜40、pHは5〜6の値に収束した。降水量が少ないときは、pHが低い値をとる場合と酸性沈着の影響のためか高いpHをとる場合に分かれた。しかし、樹幹流は降水量に関係せず、図10に示すように
ある幅を持ったpH値におさまっており、これは佐々らの報告と一致していた。

(4) 林外雨、林内雨、樹幹流の成分配成分濃度

ア 林外雨降水量と成分濃度の関係
どのイオン成分でも林外雨降水量が少なくと濃度が高くなる傾向が認められた。降水量が少ないときに濃度が高くなる傾向はCaについて、その寄与が大きいためであろう。スギとコナラの林内雨では同じように降水量が増えるに連れ、イオン成分濃度が減少する傾向が認められ、樹幹流についても同じであった。

イ 各降水量の成分濃度の関係
表5に各イオン成分について1年ごとの平均値を示した。スギ、コナラとも1年を除きすべての成分について林外雨の濃度が最も高くなり、樹幹流が最も高い濃度を示した。林内雨は両者の中間で位置したが樹幹流の濃度に近く、H⁻を除き樹幹流の1/4～2/3程度であった。

武蔵野とICU林内雨を比べると、K⁺は約7倍林内雨の方が高く、Ca²⁺、Mg²⁺でも2～3倍高かった。武蔵野は湿性降下物だけの値、ICUは（湿性＋乾性湿性降下物）の値であるが、年平均値で乾性降下物が湿性降下物の2倍以上になることはなく、葉の混入などの周辺樹木の影響によりICU林内雨のK⁺濃度が高くなったと考えられる。

次に武蔵野と林内雨の濃度を比べると、K⁺が最も高い場合も示し、スギで70～100倍、コナラでは約40倍林内雨の方が高かった。これ、Ca²⁺、Mg²⁺も高い倍率を示した。これは、林内雨では葉などから栄養塩類が

表5 林外雨、林内雨、樹幹流の各イオン濃度（年平均値）

<table>
<thead>
<tr>
<th>調査期間</th>
<th>試料</th>
<th>H μg/ml</th>
<th>Na μg/ml</th>
<th>NH₄ μg/ml</th>
<th>K μg/ml</th>
<th>Mg μg/ml</th>
<th>Ca μg/ml</th>
<th>Cl μg/ml</th>
<th>NO₃ μg/ml</th>
<th>SO₄ μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994.5〜</td>
<td>林外雨</td>
<td>0.025</td>
<td>0.44</td>
<td>0.55</td>
<td>0.06</td>
<td>0.06</td>
<td>0.21</td>
<td>1.24</td>
<td>1.52</td>
<td>1.83</td>
</tr>
<tr>
<td>1995.4</td>
<td>林内雨スリ1</td>
<td>0.008</td>
<td>3.71</td>
<td>5.62</td>
<td>5.36</td>
<td>2.01</td>
<td>8.33</td>
<td>15.6</td>
<td>16.9</td>
<td>18.9</td>
</tr>
<tr>
<td>林内雨スリ2</td>
<td>0.064</td>
<td>6.42</td>
<td>10.6</td>
<td>7.23</td>
<td>3.43</td>
<td>14.4</td>
<td>28.6</td>
<td>32.7</td>
<td>39.3</td>
<td></td>
</tr>
<tr>
<td>林内雨スリ3</td>
<td>0.007</td>
<td>0.09</td>
<td>0.07</td>
<td>2.82</td>
<td>0.74</td>
<td>3.21</td>
<td>4.27</td>
<td>3.91</td>
<td>6.88</td>
<td></td>
</tr>
<tr>
<td>樹幹流スリ1</td>
<td>0.021</td>
<td>7.89</td>
<td>9.88</td>
<td>7.53</td>
<td>2.98</td>
<td>12.0</td>
<td>38.3</td>
<td>40.5</td>
<td>49.9</td>
<td></td>
</tr>
<tr>
<td>樹幹流スリ2</td>
<td>0.037</td>
<td>8.18</td>
<td>15.1</td>
<td>5.79</td>
<td>4.04</td>
<td>15.7</td>
<td>41.6</td>
<td>51.7</td>
<td>59.1</td>
<td></td>
</tr>
<tr>
<td>樹幹流スリ3</td>
<td>0.026</td>
<td>2.15</td>
<td>3.24</td>
<td>6.01</td>
<td>1.83</td>
<td>6.61</td>
<td>10.5</td>
<td>11.7</td>
<td>19.3</td>
<td></td>
</tr>
</tbody>
</table>

1993.5〜	林外雨	0.015	0.19	0.51	0.05	0.03	0.13	0.74	1.10	1.10
林内雨スリ1	0.015	0.39	0.25	0.37	0.13	0.70	1.22	0.75	1.86	
林内雨スリ2	0.039	3.07	2.35	3.60	1.59	5.99	8.50	12.3	9.01	
樹幹流スリ1	0.035	6.38	6.82	5.97	2.55	10.1	21.5	21.7	38.1	

注）試料の武蔵野は、武蔵野測定局を示す。武蔵野の数値は、上段が1994.4-1995.3、下段は1993.4-1994.3の期間を用いた。各イオンの濃度は、降水量で重み付をした。
溶出するためと考えられた。一方、陰イオンの濃度は武藤野と比べて陽イオンほど大きな倍率を示さず、スギで10~20倍、コナラで3~4倍であった。このように林内雨のイオン濃度は、常にスギの方がコナラより高い傾向を示した。以上の傾向は武藤野と樹幹流の傾向でも認められた。

他地域のデータとの比較は調査年などが異なるためむずかしいが、静岡県のスギ林調査と同月のICUとを比較してみると、NO₃⁻、SO₄²⁻についてはICUの方が高く、海塩粒子起源の比率が高いNa⁺、Ca²⁺は静岡県の方が高かった。

埼玉県のシラカシ屋敷林における林内雨分析結果（1987年7月からの年平均値）のICUの1993年、1994年と比較すると両年の各成分濃度ともICUの方が高く、特にスギのNa⁺、Ca²⁺では4~6倍高かった。Mg²⁺、Cl⁻もICUが3~5倍高く、海塩粒子の影響はICUの方が大きかったようである。

1993年と1994年の濃度比較

林外雨とスギ1の林内雨及び樹幹流について林内雨、林外雨の比較をした。林内雨ではMg²⁺、Ca²⁺、K⁺がほぼ同じ傾向であったのを除き、1994年の方が前年に比べ高かった。特にNH₄⁺、SO₄²⁻、NO₃⁻は1994年の方が前年に比べ2倍以上入った。林内雨ではH⁺を除きすべての成分で1994年の方が前年より高濃度であった。樹幹流では、すべての成分で1994年 > 1993年であったが、2倍以上の差はなかった。

林外雨、林内雨、樹幹流の大部分の成分で1994年の方が前年より高濃度が高かったのは、1994年の降水量が多く、乾燥状態の比率が高かったためと推測される。なお、両年のこのような関連が主として気象要因によるとすれば、気象要因による現象の変動傾向はほとんど把握されなかった。

（5）林外雨、林内雨及び樹幹流の各種成分の季節変化

各種成分濃度の季節変化の中で、H⁺、K⁺濃度（スギ）について図12、図13に結果を示した。

ア スギとコナラの各種成分濃度

林外雨の季節変化については、H⁺濃度が冬→春先に低下し、夏から秋には高くなる傾向が見られた。同様にK⁺濃度も季節変化を示したが、春と秋に高く、夏に低かったといえ、H⁺濃度とは季節変化の周到が異なる変動を示した。なお、林外雨の陰イオンについては、この2年間では季節的な変動を把握することができなかった。しかし、陰イオンのNO₃⁻とSO₄²⁻は高く似た変動を示した。

次に林内雨と樹幹流の季節変化を検討した。樹幹流では、H⁺濃度変化は図12に示したように春先に高く、秋冬に低い傾向が見られた。しかし林内雨については、季節変化のパターンが一定してなかった。スギのK⁺濃度の
表6 成長期と休眠期の当量濃度比（成長期：G、休眠期：D）

<table>
<thead>
<tr>
<th>元素</th>
<th>H</th>
<th>Na</th>
<th>NH₄⁺</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>Cl</th>
<th>NO₃⁻</th>
<th>SO₄²⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>林内雨G</td>
<td>0.27</td>
<td>0.14</td>
<td>0.38</td>
<td>0.09</td>
<td>0.07</td>
<td>0.19</td>
<td>0.39</td>
<td>0.35</td>
<td>0.22</td>
</tr>
<tr>
<td>林内雨D</td>
<td>0.06</td>
<td>0.25</td>
<td>0.09</td>
<td>0.10</td>
<td>0.12</td>
<td>0.33</td>
<td>0.46</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>林内雨G</td>
<td>0.20</td>
<td>0.16</td>
<td>0.17</td>
<td>0.14</td>
<td>0.16</td>
<td>0.36</td>
<td>0.30</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>林内雨D</td>
<td>0.22</td>
<td>0.14</td>
<td>0.22</td>
<td>0.09</td>
<td>0.16</td>
<td>0.38</td>
<td>0.40</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td>林内雨G</td>
<td>0.03</td>
<td>0.16</td>
<td>0.24</td>
<td>0.10</td>
<td>0.14</td>
<td>0.33</td>
<td>0.29</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>林内雨D</td>
<td>0.00</td>
<td>0.10</td>
<td>0.26</td>
<td>0.08</td>
<td>0.15</td>
<td>0.41</td>
<td>0.40</td>
<td>0.19</td>
<td>0.35</td>
</tr>
<tr>
<td>林内雨G</td>
<td>0.04</td>
<td>0.12</td>
<td>0.15</td>
<td>0.17</td>
<td>0.17</td>
<td>0.36</td>
<td>0.25</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>林内雨D</td>
<td>0.01</td>
<td>0.11</td>
<td>0.23</td>
<td>0.18</td>
<td>0.13</td>
<td>0.39</td>
<td>0.40</td>
<td>0.16</td>
<td>0.15</td>
</tr>
</tbody>
</table>

図14 林外雨、スギ1林内雨・樹幹流のNO₃⁻/SO₄²⁻ 濃度比の季節変化

変化については、春から初夏にかけて林内雨と樹幹流とも濃度が高くなる傾向が見られた。この時期は新芽の展開期に当たり、葉表面のチャクラ層の発達が進み、葉内成分が溶出やすいと考えられる。従って、濃度が高くなるのは植物の様子であろう。林内雨、樹幹流でも新芽の展開期と著明にK⁺濃度とやや高くなり、著明期の1月～3月にかけてK⁺濃度が低くなった。

陰イオン濃度の季節変化については、スギ、コナラとも林外雨、樹幹流の成分濃度の変動が大きく、季節変化の特性は見られなかった。しかし、NO₃⁻については、植物の生育期に高い濃度をとる傾向がみられた。

なお、林外雨のH⁺濃度が高いかった次の降水採取期に、林内雨や樹幹流のH⁺濃度が高くなる現象が数例みられた（図12）。これは、林や枝、幹に前半の採取期の降水成分が水分の蒸発によって蓄積し、次回以後の降水時に流れてくることを示しているのかもしれない。

イ NO₃⁻/SO₄²⁻の比について

NO₃⁻/SO₄²⁻の比をとると、図14に示すようにスギの林内雨でN/S比が高く、冬に低い傾向が見られた。それに対照して、林外雨のN/S比は小さかった。この現象を加藤らは39、休眠の光化学反応で大気中のNOₓが反応して、NO₃⁻ができやすいと述べている。NOₓガスはSO₄²⁻をアコールに比べて葉面に沈着しやすいと考えられ、両者間の沈着速度の違いが休眠期のN/S比を大きくする一因であろう。

(6) イオン成分構成比（当量濃度比）による検討

陽イオンについておのおのイオン成分当量濃度を陽イオンの当量濃度合計値で除して、陽イオン全体に占める当該イオンの比率を求めた（当量濃度比を以下当量比と言う）。陰イオンについても同様の当量比を計算した。
季節的な特徴を見るため4月から10月（落葉樹の出芽期から落葉開始まで）を生長期とし、11月から3月を休眠期として各期間の平均値を求めたと仮定する必要性を示した。なお、計算にあたっては、林外雨コラの樹幹流までの8種の降水データを用いてイオンバランスが大きく、ECの実測値と計算値の値も良く一致を示した。この結果を表8に示した。

生長期と休眠期の当量比の特徴

林外雨では、図15に示したように当量比が生長期＞休眠期＞生長期ととなりイオンはH⁺、NH₄⁺、NO₃⁻であった。反対に休眠期＞生長期となるイオンはNa⁺、Mg²⁺、Ca²⁺、Cl⁻であった。これらのことにより、生長期にはガス状物質の、休眠期には粒状物質の当量比が大きくなる傾向にあり、結果として生長期の降水pHが低下していると言えることができる。なお、林外雨のK⁺とSO₄²⁻は当量比の季節的な相違が小さいかった。

スギの林内雨及び樹幹流の当量比が、表6に示すように、林外雨における生長期と休眠期の間の大きな変化はなく、特に陽イオンでは季節による当量比の違いは小さかった。陰イオンのCl⁻とNO₃⁻については、林外雨と同様に生長期のCl⁻で当量比が低く、NO₃⁻では、高くなる傾向が、林内雨、樹幹流とも共通して認められた。コナラの当量比の季節変化は、スギとほぼ同じであった。

林外雨、林内雨、樹幹流の当量比の相違

次に調査結果を林外雨、林内雨、樹幹流の当量比の違いを検討した。図16に各々の当量比を樹種別、季節別に示した。スギでは、林外雨と樹幹流のイオンバランスはほとんど当量比の相違がなかった。コナラについては、樹幹流と林内雨との間だけでなく林内雨も含めて当量比の相違が小さかった。すなわち陰イオンについては、林外雨、林内雨、樹幹流の間で当量比に大きな違いがないことがわかった。

これに対しK⁺は樹種により林外雨、林内雨、樹幹流の当量比の差が大きかった。つまり、コナラでは林外雨より林内雨と樹幹流のK⁺当量比が小さくなるのに対し、スギの樹幹流では林外雨に近い当量比を示した。特に生長期にその傾向が顕著であった。K⁺、Mg²⁺、Ca²⁺については、スギ、コナラとも林外雨より林内雨、樹幹流の当量比が大きかった。特にコナラの生長期でその傾向が顕著であった。これらは栄養塩類が、葉や樹皮から溶出してきたためと考えられる。

まとめ

本報告では、林外雨、林内雨、樹幹流の降水量、pH、EC及びイオン成分濃度の間隔を測定、頻度分布、季節変動、イオン成分間の関係、これらの樹種による相違、などの基本的な検討を行った。

1. 林外雨、林内雨樹幹流の年降水量は、林内雨、樹幹流とともにスギの方がコナラより少なかった。
 林外雨年降水量に対する林内雨、樹幹流の比率は、林内雨ではスギ約60%、コナラ約70%であった。樹幹流の比率は1%未満と小さく、スギでは0.3%〜0.5%、コナラでは0.8%であった。

2. コナラの林内雨は林外雨の降水量に比例して直線的に増加するが、降水量が80mmを越えると増加率は低下した。反対にスギでは林内雨は降水量が40mm位までは緩やかで、その後増加率が大きくなった。樹幹流でも両者に違いがあり、落葉樹と常緑樹の違いや樹の構造及び樹形等の相違によると考えられた。

3. 林外雨の年平均値の最も高いは、武蔵野、林外雨、スギ林内雨及びコナラ樹幹流ではpH4.4〜4.8の間にありほぼ同じレベルであった。コナラの林内雨はpH6.0〜6.2と高く、スギ樹幹流ではpH3.4〜3.6と非常に低かった。

4. 年平均値を比較するとECについては、スギ、コナラとも明らかに、林外雨＜林内雨＜樹幹流であった。pHについては、コナラでは、林内雨＞林外雨＞樹幹流の関係が見られ、スギでは（林外雨、林内雨）＞＞樹幹流であった。

5. 林内雨ではH⁺が春〜夏に低く、春先と秋に高くなる傾向が見られた。K⁺は春先と秋に濃度が高い傾向があった。スギ林内雨ではK⁺が春〜夏にかけ濃度が高く、秋〜冬に濃度が低くなる傾向がみられた。コナラ林内雨では、落葉期の1〜3月頃のK⁺濃度が低かった。これ以外では陽イオン、陰イオンとも変動が激しく不明確な傾向がつかめなかった。

6. 陽イオン、陰イオンの総当量濃度に対する各イオ
参考文献

8) 神奈川県環境部大気保全課大気観測指導班: 酸性雨に係わる観測報告書, 1994, 3.

9) 森川 慶、丸山 慶、松本啓介: 酸性雨による植物衰退現象の実態——栃木平野のスギ、資源環境対策, 28, 14, p.7-11 (1992)

14) 関前啓二、沖津 隆、植田洋治: 東京都におけるスギの衰退と酸性降雨物による可能性, 森林立地, 28, 1, p.11-17, (1986).

21) 田中 勝: 佐倉近郊におけるトマツ、エゾマツ人工林の樹幹流、林間雨および林間雨について, 森林
立地、33,1,p.8-15 (1991)。
22) 久米一成ら：スギ、ヒノキの樹幹を流れる雨水成分
23) 久米一成ら：スギ、ヒノキの樹幹を流れる雨水成分
の性質（第2報）、静岡県衛生環境センター報告32, p.51-57, (1989)。
24) 高野健一、水上和子：酸性降下物による樹木への影
響（第2報）：埼玉県公害センター研究報告16,p. 86-92, (1989)。
25) 水上和子、高野健一：酸性雨による樹木への影響—
屋敷林内外における降水成分調査——：全国公害研究
誌、15,2,p.52-56, (1990)。
26) 加藤善雄、矢本てるみ：都市域における林内雨・樹
幹流（1）——樹木内外間の成分組成と年間降雨量——
横浜市環境科学研究所報,17,p.35-47, (1993)。