家庭用焼却炉を用いたダイオキシン類の生成要因の検討

辰崎祐久 早稲田孝 古明地哲人 岩崎健陽

要旨

紙類、木、ペパーユック、枯れ葉、ポリ塩化ビニールを混合した材料、それらの混合物を家庭用焼却炉を用いて焼却したときの、ダイオキシン類の発生状況と、その生成要因を検討した。

家庭用焼却炉の燃焼は平均400℃～600℃であり、排ガスの平均CO濃度は1%以上の高濃度の場合があり、変動が大きかった。材料にポリ塩化ビニールを約0.1～5.0%混入した場合の排ガス中のダイオキシン類濃度は、3.2～1100ng-TEQ/m³となり、ポリ塩化ビニールの混入率が多くなるにつれて、ダイオキシン類濃度は急激に増加した。ポリ塩化ビニール混入率と排ガス中のダイオキシン類濃度との関係は、

\[Y = 140X^{14} \]

\[X: \text{ポリ塩化ビニール混入率} \%
\]

\[Y: \text{ダイオキシン類濃度} \text{ng-TEQ/m³} \]

となった。

また、ポリ塩化ビニールを1g焼却すると約140ng-TEQのダイオキシン類が生成した。焼却灰中のダイオキシン類濃度も同様に、ポリ塩化ビニールの混入率が多くなるにつれて増加した。排ガスのダイオキシン類をポリ塩化ジペンソについて検査した結果、PCDDs, PCDFs, コプラナーゼPCB (Co-PCB) に分けたときに、大部分の焼却対象物でPCDFsが67%前後を示していた。

キーワード: ダイオキシン類、家庭用焼却炉、排ガス、ポリ塩化ビニール

1 はじめに

我が国におけるダイオキシン類の一般大気の環境濃度は、欧米に比べ高く、その発生源として一般廃棄物焼却、産業廃棄物焼却が主な原因と考えられている。

大気汚染防止法及び廃棄物処理法の改正で、新設や既設の焼却炉でも規制が強化された。そのため、規制対象となる廃棄物の焼却については、焼却炉の燃焼を850℃以上の高温に保ち、滞留時間を2秒以上とし、一酸化炭素濃度を100ppm以下にして焼却する。さらに、排ガスを200℃以下に冷却して、パックフィルターでガスを除去する等の排ガス抑制策が実施されている。さらに2000年にはダイオキシン類対策特別措置法が施行され、幅広く排ガス抑制対策が進められることになった。

しかし、バッチ式の小型炉では炉の立ち上げ、立ち下げ時にダイオキシン類が生成しやすいと考えられており、とくに家庭用焼却炉の場合、バッチ式で炉温が低く、完全燃焼しさくく、排ガス処理装置が設置されていないため、ダイオキシン類生成の可能性が高いと考えられた。

家庭用焼却炉を用いてダイオキシン類の生成を調査した例は多く、板橋区の調査など、その報告例は少ない。そこで、一般的な家庭用焼却炉を用いて、家庭で廃棄されるさまざまな廃棄物について焼却実験を行い、排ガス中及び焼却灰中のダイオキシン類の生成について調査し、廃棄物の原単位を求める。さらに、ポリ塩化ビニールの混入率を変化させて焼却し、ダイオキシン類の生成要因について検討した。

平成10年度の東京都内における家庭用焼却炉の台数は6万台程度と推定され、原単位を用いることにより、
都内からの家庭用焼却炉より発生するダイオキシン類排出量が推計された。

2 実験方法
(1) 家庭用焼却炉

焼却実験は図1に示すステンレス製で円筒形の炉内容積80 L、ガス床面積0.13m^2の一般家庭用焼却炉を用いた。排ガスの採取と浄化の調査は、家庭用焼却炉に直接備えていた煙突の途中で行った。処理前後の排ガス対策としてフィルター付き排ガス水洗浄装置を設置し、排ガスの粉塵を処理した。

![図1 家庭用焼却炉の概念図](image)

焼却物の投入方法は、焼却対象物の適当量を上部の投入口より投入した。焼却は燃焼対象物が燃焼切ららい内に、次の燃焼対象物を投入することによって、約3 〜 10分間隔で行った。1回の実験は約10 〜 20Kgの焼却対象物を約3 〜 5時間かけて焼却した。燃焼時の空気の流入は灰採取口の蓋を開放している状態の、自然流入とし、特別の補助燃料は加えなかった。

また、火だけにより落下した焼却灰は適時採出し、冷却後重量を測定した。

(2) 燃焼対象物

実験の焼却対象物を表1に示した。紙類は、広告紙、コート紙、広告紙、ケチャ、スプーン、グラス、シラカシ、ベニヤ板（木製品）、木（約3 〜 4cmの形鉄、石）の6種類で、各60gの組み合わせたものを用いた。混合物を燃焼させたが、その他のレシピを用いた。

表1 家庭用焼却炉の焼却対象物

<table>
<thead>
<tr>
<th>燃焼対象物</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>紙類</td>
<td>広告紙、コート紙、広告紙、ケチャ、スプーン、グラス、シラカシ</td>
</tr>
<tr>
<td>木材</td>
<td>ベニヤ板（木製品）、木（約3 〜 4cmの形鉄、石）</td>
</tr>
<tr>
<td>混合物</td>
<td>混合物1（広告紙40% + コート紙40% + ケチャ9% + スプーン9%）</td>
</tr>
<tr>
<td>混合物2（広告紙50% + コート紙30% + ケチャ19% + スプーン1%）</td>
<td></td>
</tr>
<tr>
<td>混合物3（広告紙40% + コート紙40% + ケチャ9% + スプーン9%）</td>
<td></td>
</tr>
</tbody>
</table>

の広告紙、ケチャの落ち葉、ポリエチレンフィルムは交互に投入し、混合物2の食塩を除去状態でポリエチレンフィルムの中に投入した。

焼却実験は同一条件の焼却対象物について、一部を除き2回以上行い、それぞれ排ガス中のダイオキシン類濃度を分析し、焼却灰の分析はその実験のうち1回分の試料で行った。

(3) 分析方法

ダイオキシン類：厚生省「廃棄物処理におけるダイオキシン類標準測定分析マニュアル」（1997年2月）に準拠。家庭用焼却炉からの排ガスはタール分や粉塵が多いために、円筒ループをしばしば交互に採取した。また、一部はダストチューブを使用して採取した。

焼却灰は5mmメッシュの網を通過後の試料について測定した。

コプラナーPSCB：環境庁「ダイオキシン類に係る廃棄物処理の基準調査基準マニュアル」（1998年7月）により、ダイオキシンを試料から分取して測定を行った。

ダスト：JIS Z8808 円筒測定法

塩素酸化物：化学発光方式による連続測定

一酸化炭素：赤外線吸収方式による連続測定であり、 Nicaragua使用した測定器では「最大測定時間5000ppm程度であったため、空気による希釈によって数％程度まで測定範囲を拡大して使用した。

酸素：ジルコニア方式による測定測定

クロロペンゼン、クロロフェノール：n-ヘキサン吸収後、ガスクロマトグラフ-マススペクトル法による測定

温度：白金-黒金ロジウムによる熱電対法による連続測定

なお、今回の測定結果のダイオキシン類は、PCDDs、PCDFs、Pe-CPCBの合算値として、等価毒性係数（TEQ）は1998年に発表されたWHOの値を用
3 結果及び考察
(1) 焼却温度及び排ガスの成分
各焼却対象物の焼却温度及び排ガス成分を表2に示した。平均の排ガス温度は、400℃～600℃であり、材
木に塩化ビニルが混入した場合ではほとんどが500℃を超えていた。焼却温度を示した排ガス温度は焼却対象
物の投入後から上昇し、短時間に燃焼尽きるために下
降するという波形を繰り返していた。

<table>
<thead>
<tr>
<th>表2 排ガス温度と排ガス成分の濃度</th>
<th>焼却温度</th>
<th>排ガス %</th>
<th>CO</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>焼却物の種類</td>
<td>排ガス温度</td>
<td>CO %</td>
<td>NOx %</td>
<td>COppm</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>燃焼廃棄物</td>
<td>500</td>
<td>0.1</td>
<td>10.3</td>
<td>0.35</td>
</tr>
<tr>
<td>ペンキ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩素化合物 (塩化物)</td>
<td>844</td>
<td>0.26</td>
<td>0.8</td>
<td>8.8</td>
</tr>
<tr>
<td>スズ化合物 (塩化物)</td>
<td>848</td>
<td>0.2</td>
<td>0.8</td>
<td>8.2</td>
</tr>
<tr>
<td>スズ化合物 (塩化物)</td>
<td>541</td>
<td>0.2</td>
<td>0.8</td>
<td>8.2</td>
</tr>
<tr>
<td>スズ化合物 (塩化物)</td>
<td>498</td>
<td>0.2</td>
<td>0.8</td>
<td>8.2</td>
</tr>
</tbody>
</table>

排ガスのダスト濃度は、焼却廃棄物を含む現状で、1g/m³ N以下であった。排ガスの平均酸素濃度は5～10%前後であり、塩化ビニル混
入率が増加したとき5%前後の低い値であった。

焼却廃棄物の焼き温度を示した表2の結果では、焼却物の投入
後に急激に温度が上昇し、焼き焼却対象物が順調に燃焼し
始めると、大きく低下していた。烧却温度の平均値は、材木、
焼却温度で0.1%以下であり、他の焼却物では0.2%～1.8%を示
し、特に焼却廃棄物で1%以上となっ
た。

排ガス中の塩素化合物の濃度（O12%換算値）の平均
値は、炉温が600℃以下ため、焼却廃棄物を除き多くは
300ppm以下を示していた。

(2) ダイオキシン類の分析結果
図2は排ガス中のダイオキシン類濃度を焼却物ごと
に平均して、対数表示で示し、その平均値を図中に示
した。排ガス中のダイオキシン類濃度（O12%換算値）
は、材木、ペニシピン酸からは1.3ng-TEQ/m³ N以下であ
り、汎用物については、0.85～4.4ng-TEQ/m³ Nの値で、
広域設定値や高価が見られた。焼却廃棄物のダイオキシン
類濃度は、8～26ng-TEQ/m³ Nを示し、紙類よりやや高
めの値であった。材木にポリ塩化ビニルを0.1～5.0%混
入した場合の排ガス中のダイオキシン類濃度は、3.2～
1100ng-TEQ/m³ Nで顕著に高くなっていた。また、混
合物3において茶業と紙にポリ塩化ビニルが2.0%混入した
場合の焼却物も、490～810ng-TEQ/m³ Nの高いダイオキシン類濃度を示していた。

焼却廃棄物のダイオキシン類濃度は、材木、広域設定値か
らは1pg-TEQ/g以下であり、材木にポリ塩化ビニルを
0.1～5.0%混入した場合の焼却廃棄物のダイオキシン類濃度は、2.7～150pg-TEQ/gの
高い値を示した。また、都市ごみ焼却炉と家庭用焼却
廃棄物のダイオキシン類濃度を比較した場合、家庭
用焼却炉は1桁少ない2桁低かった。

(3) ポリ塩化ビニル混入率と排ガス中のダイオキシン類濃度との関係
杉田村に硬質ポリ塩化ビニルを、0%、0.1%、0.5%、
1%、5%程度混入して焼却した場合の排ガス中のダ
イオキシン類濃度を測定した。その結果を図2に示し
て図3に示した。図3からポリ塩化ビニル混入率を
増加させると、排ガス中のダイオキシン類濃度も混入率
に応じて増加していた。

図3のポリ塩化ビニル混入率（Y）%と排ガス中の
ダイオキシン類濃度（Y）ng-TEQ/m³ Nとの関係を計算したとき、

\[Y = 1.40X^{1.4} \]

となり、相関係数 \(r^2 \) は0.98（n = 9）となった。

なお、既設焼却炉のダイオキシン排ガス抑制基準値
である80ng-TEQ/m³ Nに対応するポリ塩化ビニル混入
率は0.4%に相当していた。

東京都環境科学研究所年報 2000
（4）焼却灰中のダイオキシン類濃度及びポリ塩化ビニルとの関係

図4はポリ塩化ビニルの混入率と焼却灰中のダイオキシン類濃度との関係を示す。図4から、焼却灰中のダイオキシン類濃度は排ガスの場合の数値に比べて低く、少量のポリ塩化ビニルの混入でもダイオキシン類濃度が高まる。焼却灰中のダイオキシン類濃度も上昇していた。

また、家庭用焼却炉の焼却灰中のダイオキシン類濃度は東京都の都市ごみ焼却炉からの焼却灰の濃度より1桁以上低かった。

（5）ダイオキシン類発生量の原単位

今回の実験から、焼却対象物ごとの排ガスのダイオキシン類発生量の原単位を全排ガス量、ダイオキシン類濃度と焼却物重量から算出し、焼却灰の発生量を灰のダイオキシン類濃度、焼却灰重量と焼却物重量から算出した。焼却対象物として、広告紙、木枠、枯れ葉（ケヤキ）、ポリ塩化ビニル、混合物1、混合物3を取り上げた。計算された家庭用焼却炉における焼却対象物1gあたりのダイオキシン類発生量の原単位を表3に示した。

表3 ダイオキシン類発生量の原単位

<table>
<thead>
<tr>
<th>焼却対象物</th>
<th>ポリTES (mg-TEQ/g)</th>
<th>焼却灰</th>
<th>ポリTES (mg-TEQ/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>広告紙</td>
<td>0.017</td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>木枠</td>
<td>0.0019</td>
<td>0.0037</td>
<td></td>
</tr>
<tr>
<td>枯れ葉（ケヤキ）</td>
<td>0.17</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>枯れ葉（シラカシ）</td>
<td>0.015</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>0.0074</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>混合物1</td>
<td>1.40</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>混合物3</td>
<td>0.28</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>混合物3</td>
<td>5.6</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

表3から、排ガス中におけるポリ塩化ビニルの単位が他の焼却対象物に比べて数桁高く、少量のポリ塩化ビニルの混入でもダイオキシン類が多く発生することが示された。ポリ塩化ビニルが20%の混合物3では、排ガスの原単位が焼却灰から28ng-TEQ/g以上に検出されていた。この理由としてはWirtzらの結果のようにポリエチレンを混入したため、不完全燃焼などの理由からダイオキシン類の生成が多くなったと考えられた。

焼却灰のダイオキシン類原単位は、ポリ塩化ビニルでも10pg-TEQ/gであり、排ガス中に比べ3桁程度低く、焼却によって生成したダイオキシン類の大部分は排ガスとして出た。

また、平成2年3月東京都環境保全局は、平成10年度に都内の家庭用焼却炉から発生したダイオキシン類排出量が、今回の排ガスの原単位を用いて18g-TEQと推計した。これは都内の全排出量の3.4%に当たるとした。

（6）焼却対象物別のダイオキシンの構成比の比較

排ガス中のダイオキシン類の4〜8塩素数別構成パターンについて、PCDDsは図5に示し、PCDFsは図6に示した。図5と図6より、排ガス中の濃度は、PCDFsがPCDDsより1桁程度多く検出していた。塩素数別に分類した場合、八塩素化物から四塩素化物の間で高く生成される傾向を示していた。これらのPCDFsは高、塩素数別ではT.CDFsが高い傾向を示したのは、安原らの小型焼却炉や長田らの都市ごみ焼却炉の結果とも一致していた。

次に、表4に排ガス中のダイオキシン類に占める、PCDDs、PCDFs、Co-PCBの割合をTEQ換算した値で示した。また、表4では排ガス中について示しているが、焼却灰については全体的濃度が低く、検出限界
ダイオキシンの生成に及ぼす食塩の影響を調べるため、燃焼対象物（紙、枯れ葉など）に食塩を0.2%を添加した混合物2の場合と、混合物1の食塩を添加しない場合とのダイオキシン類濃度を比較した。

それぞれ2回の実験を行ったところ、食塩を添加した場合25～28ngTEQ/m^3で、しない場合のダイオキシン類濃度25～40ngTEQ/m^3より低く、食塩の添加によるダイオキシンの生成の有意差は認められなかった。

なお、安原ら11) は食塩水に露を浸し、乾燥後に小型焼却炉で焼却した場合、食塩によるダイオキシン類生成の影響が比較的大きいことを報告している。この相違の原因として、実験に用いた小型焼却炉の保温力が高いことや再燃焼装置が付設され、排ガス温度が比較的高かったことなどが考えられる。

4 まとめ

今回の実験の結果、以下のことが明らかになった。
1) 家庭用焼却炉の排ガス温度は、400℃～600℃程度で、一酸化炭素の平均濃度は木炭、広告紙で低かったが、枯れ葉や、ポリ塩ビニールを混入した混合物で1%以上に達した。
2) 排ガス中のダイオキシン類濃度は、材木、ペニヤ板からは1ng-TEQ/m^3以下であり、紙類については0.85～4.4ng-TEQ/m^3の値を示した。特に枯れ葉からは8～26ng-TEQ/m^3で、特にケヤキの葉は比較的高い値が検出された。
3) 材木にポリ塩ビニールを0.1～5.0%混入した場合の排ガス中のダイオキシン類濃度は、3.2～1100ng-TEQ/m^3となり、ポリ塩ビニールの添加量が高くなるにつれて、ダイオキシン類濃度が増加していた。ポリ塩ビニール混入率（X：%）と排ガス中のダイオキシン濃度（Y: ng-TEQ/m^3）との関係は、

\[Y = 140X^{1.4} \]

となり、相関係数は0.89 (n = 9) となった。
4) 材木に塩化ビニールを0.1～5.0%混入した場合の焼却灰ダイオキシン濃度は、27～150pg-TEQ/gで、ポリ塩化ビニールの混入率が増加するにつれて増加していた。
5) 今回の調査からダイオキシン類発生の基準値を算出した。その結果、家庭用焼却炉でポリ塩化ビニール1gを焼却すると排ガス中に約140ng-TEQのダイオキシン類が発生した。
謝辞
本研究を進めるにあたって、(旧) 東京都環境保全局大気規制課の多大なる協力を得ましたことをここに深く感謝いたします。

文献
1）環境庁：ダイオキシン排出抑制対策検討会第二次報告書、1999。
2）小林義男：ごみ焼却におけるHCL除去とダイオキシン排出量の抑制、廃棄物学会誌、10、98-87(1999)
3）長田容、鈴木実、藤木聡、青木史彦、横山隆:ストーカ炉におけるダイオキシン等低減化技術、NKK技術、159、1-5(1997)。
4）佐伯本信、池永茂博、川上亨、塚本信彰、佐藤誉司、二村道:ダイオキシン対応のストーカ式ごみ焼却施設の設計事例、エバラ時報、177、24-29(1997)。
5）木村哲雄:ごみ焼却炉におけるダイオキシン対策技術、大気環境学会年会講演要旨集、38th、240-241(1997)。
6）吉川進司、三崎真、芝川重博、石川隆一、小瀬公利、坪井晴人、村川忠:ごみ処理に係るダイオキシン類の削減対策、焼却施設の具体的なダイオキシン対策について、都市清掃、50、218、245-271(1997)。
7）板橋区：焼却炉実態調査（ダイオキシン測定実験結果）報告書(平成10年9月)、1998。
9）東京都清掃局：区の焼却工場における焼却灰のダイオキシン類濃度測定結果(平成11年9月現在)、1999。
11）安藤昭夫、森見武男、安田裕、宮崎徹：小型焼却炉におけるダイオキシン類の生成実態、第10回廃棄物学会研究発表会講演論文集、805-807(1999)。
12）長田容、薬丸隆、尾崎英治：フィルタ高温使用時のダイオキシン類挙動、第9回廃棄物学会研究発表会講演論文集、662-664(1998)。

東京都環境科学研究所年報 2000