雑木林の植生と環境要因に関する基礎的研究
(2)異なる管理形態における生物相の実態

菅 邦子 大橋 毅 大野正彦

要 旨

都市近郊における雑木林の維持管理方法を求める為に、まず、現植生および昆虫・クモ類の生息状況を明らかにした。結果、調査地は、コナラケニキ群集典型亜群集のシラヤマギク変群集であることがわかった。調査地のうち、毎年冬に下草刈りと落ち葉かきが行なわれている台地部の雑木林では、林床が明るく、草本層が豊かであった。一方、台地部の放置された雑木林では、灌木やアズマネサラが密生し、草本層の種数および被度とも、前者より少なかった。このように、台地部では下草刈り、落ち葉かきの有無により、林床植生が大きく異なっていた。一方、放置されていても斜面部の雑木林では、複雑な地形のため樹種が多くなり、草本層の種数も多いことがわかった。しかし、昆虫類やクモ類については、必ずしも管理された台地の方が、放置された台地より生物相が豊かであるとはいえなかった。なお、台地部の落葉量は1haあたり約5.5トンで、一般的な雑木林の落葉量であった。

キーワード：雑木林、植生、種多様性、アズマネサラ、シラヤマギク、雑木林管理

1 はじめに

前報(1)「雑木林の樹木構成」に引き続き、雑木林の生物相調査を行った。本調査の目的は、下草刈り及び落ち葉かきが、どのように雑木林の植生及び昆虫・クモ相が変化させるかを把握するためであり、今回は人為的管理を行う前の生物相の現状を報告する。前報で樹木構成を調べた4つの雑木林には、冬に1回下草刈り落ち葉かきの管理を20年以上継続している管理地域と20-30年ほど放置されていた無管理地域がある。これらの雑木林に20μm四方のコドラートを1〜2ケ所設置し、草本層から高木層まで層別にすべての植物種及び被度、生活形等の現状を把握した。また、コドラート内の昆虫類、クモ類の生息状況を把握した。現状把握調査後には、各コドラートの半分を下草刈り、落ち葉かき行なう管理区、半分を無管理区として設定し、管理の有無による植生や昆虫等の変化について継続調査を行っている。今後、日射量や気温などの「環境要因調査」や前報の「樹木構成調査」及び本調査地の諸条件等をあわせて総合的に検討し、適切な管理手法について検討する予定である。

図1 調査地図
2 調査方法

(1) 調査地
調査地は三鷹市大沢にある国際基督教大学構内にある。調査地域全体の概要は、図1のとおりである。
ア　台地上のコナラ・クヌギ林（管理及び放置地域）
台地上のコナラ・クヌギ林には、下草刈り・落ち葉残を毎年行っている地域（以下台地管理地域という）と、20〜30年管理されていない放置地域（以下台地放置地域という）がある。

管理地域では、年齢、大学と近隣の農家の協議によって下草刈り・落ち葉残が、年1回に行われてきた。なお、管理地域のコナラ・クヌギ林は樹齢50年以上の個体が多く、萌芽更新するには更新能力が落ちていると思われること1)

放置地域では全体の樹齢はやや若いが、コドラート内のコナラ・クヌギ林の樹齢は高く、萌芽更新が難しいと思われた。

イ　斜面地のコナラ・クヌギ林（放置地域）
斜面地は6区分に分かれており、台地と違って地形が複雑である。それを反映して、斜面地の雑木林はコナラ、クヌギの他にミズキ、コブシなどの種類も混合し多様な樹種構成になっていった。なお、崖縁下にある沼池の周辺では、常緑樹のアオキ、シラカシや草本のセキショウなど、他の場所と異なる植生を構成していた。

(2) 調査方法
植生調査と昆虫・クモ類の調査は、同じコドラート内で実施した。

ア　植生調査
植生調査は、2000年3月から行った。調査地の高木層の樹高を考慮し、20m四方の方形区（コドラートという）を台地地域に2区（3区、5区）、斜面地域に6区（7区、8区）、合計5区を設定した。植生調査は、3月から5月は、2週間間隔で、春の植物を中心に調査し、6月から10月は、1か月間隔で調査した。

調査は、植物の高さ別に4段階（高木、中木、低木、草本層）に区切って行った。各階層は、高木は樹冠をなすもの（I層）、中木は樹冠から3m以上（II層）、低木は3m未満から0.5m以上（III層）、草本層は0.5m未満（IV層）の高さで区分し行った。調査項目は、各層別に種名と、種毎の被度である2)。

イ　管理形態の設定（下草刈り・落ち葉残の有無）
上述の植生調査を行った後、人為的な管理と放置による植生変化を比較することを目的として、各コドラートを四区分し、図2の様に下草刈り・落ち葉残をした管理区と無管理区を設定した。台地放置地域では、アズマネササ収穫区（8区）と灌木収穫区（7区）について、実生発芽の相違を明らかにするため、コドラート内の管理区と無管理区内に1m四方の区を各2か所ずつ設置した。

斜面の雑木林は、同様に20mコドラートを設置し四区分した。ただし、斜面であるので草木の被度の影響を考えて、下草刈りなどの手入れを行わなかった。
下草刈り・落ち葉残は、2000年12月〜2001年1月にかけて行った。

図2　調査地域概念図

ウ　現存量
放置地域（7、8区）で、コドラートの半分約200mについて、下草刈りに加えて0.5m以上4mまでの範囲を調査を行った。この際、萌芽して灌木について、樹種、胸高直径、根径、灌木（灌木）を計測した。残りの4分の1を残してコドラートについては、樹種、胸高周囲、樹高について計測した3)。なお、7区は1層と3層で灌木が優占しており、8区の3層ではアズマネササが優占していた。2001年1月には、各コドラートにおける灌木の数を測定し、落葉を採取して乾燥物を計測した。

エ　昆虫・クモ類
台地管理地域（3、5区）、台地放置地域（7区）、
斜面放置地域（6区）の各区毎に、すぐ取り扱い（スウィービング法）より2000年1月から2001年1月まで、毎月調査。コドラートの4分の1（10m×10m）内の草や低木に向かって、口径360mm、ナイロン糸の捕虫網を5分間300回振り、昆虫・クモ類等を集めた。2000年4月を除き、同一日に調査し、2時間以内に全ての区で採集を終えた。なお、月ごとに、コドラート内の採集場所を変えた。

試料をビニール袋に入れ、実験室に持ち帰り、冷凍室に保存した。解釈後、眼鏡および実体顕微鏡下で昆虫・クモ類等を拾いだし、50％アルコール溶液に保存した。

3 調査結果

(1) 全体の構成

本調査の概要を表1にまとめた。調査地には草本層シラヤマギク・アキノキリンソウ・ヒメバツデリグリ・アキノタムラソウ・ヒメハンサギ・ノガリヤス等が生育していた。このことから調査地がコドラートクスギ群集典型的亜群集のシラヤマギク変群集であることがわかった。

亜高木層にエゴノキ・ミズキ・ムラサキシユブ・カマツカ・ゴンソイが多く、鳥由来のミズキが多いのが特徴である。典型的な萌芽更新に努めている八王子大谷保全地域・北海道保全地域ごとに比べ、アキノタムラソウ・アキノキリンソウ・ヒヨドリバナなど草本相が豊かで、帰化種が比較的少なかった。

なお、供試材品種の詳細は、本年報：大橋らで述べた。

<table>
<thead>
<tr>
<th>表1 雑木林の樹木・草本の種数と被度</th>
</tr>
</thead>
<tbody>
<tr>
<td>種類</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>高木層</td>
</tr>
<tr>
<td>中木層</td>
</tr>
<tr>
<td>低木層</td>
</tr>
<tr>
<td>草本層</td>
</tr>
<tr>
<td>被度</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>高木+中木層</td>
</tr>
<tr>
<td>低木層</td>
</tr>
<tr>
<td>草本層</td>
</tr>
</tbody>
</table>

(2) 階層別の種数と被度

ア 階層別の種数

各コドラート毎の階層別種数と被度を表1に示した。表1から、高木層の主な樹種はコナラ・クヌギ・ミズキ・イヌシダであったが、その種数はコドラート間であまり差が無いかがわかった。中木層及び低木層の合計値でみると斜面放置地域の6区で種数が最も多く、台地管理地域の3・5区がそれに次ぎ、台地放置地域の7、8区では最も種数が少なかった。なお台地放置地域では灌木が多かった7区の方が、アズマネサが多い8区より種数が多かった。

台地管理地域の3、5区は、明るく草本層の種数が多くかった。斜面地域の6区は地形が凹凸があり、斜面下部から涓水から常緑性の植物も生育し、全層にわたり比較的種類が多かった。それぞれ栽培中、低木層の木本が多い7、8区では草本の種数は3・5・6区の約半分であった。

イ 階層別の被度

表1の被度の値を比較すると、樹冠をなす高木・中木層の各コドラート間の差は小さかった。管理が進んでいる3・5区では低木葉の被度が極端に少なく、草本層の多様性が確認された。なお太い樹木の周囲には機械でおこなう下草刈りのため、刈り残された低木が多く生育しており、下草刈りを行わないと、このような種類が出てくるものと考えられた。

一方、台地放置地域7、8区では、低木葉が多く、草本層の被度もかなり小さかった。

各コドラートの草本層の生活形について、表2に示した。7、8区では、極端に種数が少なく、相対的になるが植物が多かった。また、常緑性草本のジャノヒゲ・ヒメヤブラン・ヤブラン多かった。

一般的な関東の雑木林についてみると、ガマズミが多いこと、下草刈りのされていないところにアズマネサがでてくること等の特徴があり、本調査地でも管理された林床植生は一般的な関東の雑木林と同様の特徴を示していた。また、台地管理地域の3・5区においては、乾いた地立に立てるノガリヤスやオケラ・アキノキリンソウや湿潤地に立てるシオデ・ニガナ・シラヤマギク・ヨドリバナ、湿潤地ででてくるアマナ・キネノカミソリ・ウマニアシガタなどが混在して生育していた。このことから台地管理地域では、乾燥したところと湿潤なところが混在していると推測された。台地管理地域のすぐ西側の斜面下部から涓水が数か所出ていることもあり、台地管理地域はかなり複雑な立地条件にあることをうかがわせた。

調査対象区以外の構内で注目すべき植物は、イカリ
<table>
<thead>
<tr>
<th>種名</th>
<th>被度</th>
<th>地域</th>
<th>種類</th>
<th>見栄</th>
<th>調査地点</th>
<th>調査日</th>
<th>種類</th>
<th>見栄</th>
<th>調査地点</th>
<th>調査日</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>0.0</td>
<td>北部</td>
<td>A.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
<td>B.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
</tr>
<tr>
<td>B.</td>
<td>0.0</td>
<td>北部</td>
<td>B.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
<td>C.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
</tr>
<tr>
<td>C.</td>
<td>0.0</td>
<td>北部</td>
<td>C.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
<td>D.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
</tr>
<tr>
<td>D.</td>
<td>0.0</td>
<td>北部</td>
<td>D.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
<td>E.</td>
<td>0.0</td>
<td>東京都</td>
<td>2001.01</td>
</tr>
</tbody>
</table>

東京都環境科学研究所 年報 2001
表3 台地放置地域のコドラートにおける切除灌木の種類と大きさ

<table>
<thead>
<tr>
<th>7区灌木優占区</th>
<th>個体数</th>
<th>植高</th>
<th>乾物重</th>
<th>材積 D³H</th>
<th>位置</th>
<th>8区ササ優占区</th>
</tr>
</thead>
<tbody>
<tr>
<td>植高</td>
<td>累計</td>
<td>重計</td>
<td>D³H</td>
<td>m</td>
<td>kg</td>
<td>cm³/100</td>
</tr>
<tr>
<td>マユミ</td>
<td>33</td>
<td>59</td>
<td>59</td>
<td>375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アオキ</td>
<td>25</td>
<td>49</td>
<td>42</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>コブシ</td>
<td>22</td>
<td>39</td>
<td>26</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ミズキ</td>
<td>22</td>
<td>33</td>
<td>19</td>
<td>139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ガマズミ</td>
<td>18</td>
<td>31</td>
<td>19</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ムラサキシキブ</td>
<td>17</td>
<td>33</td>
<td>32</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>エゴノキ</td>
<td>10</td>
<td>16</td>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イヌツゲ</td>
<td>8</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>キョウノキ</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ウグイスガラ</td>
<td>5</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ノイバラ</td>
<td>5</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポウズミズモチ</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ウオニズモチ</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>エクノキ</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カララ</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>シロダグム</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヨザクラ</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タカカエデ</td>
<td>21個</td>
<td>合計</td>
<td>194</td>
<td>356</td>
<td>284</td>
<td>941</td>
</tr>
</tbody>
</table>

(注) 7区、8区とも高さ50cm以上の個体を含めた。

ソウ・カタクリ・エビネ・イチヤクソウ・オケラ・アマナ・ヒロハアマナ・ササクサ・ホソバヒカラグサ・コヒロハナヤスリ・ツリフネソウ・イヌショウマで
あった。なお、調査地域内にあった草植物のキクラン・ギンラン・ササバギンランや、夏植物のオオバキボウシ、オケラ、ヒトリシジマについては、市中市府間の調査でも注目される植物種と記載されている。

(3) 灌木およびアズマネザサの現存量

ここで、述べる灌木は、植生調査の層別で低木層と草本層に含まれる木の総称である。

ア 7区・8区の切除灌木個体数、樹種、乾物重、材積

表3に台地放置区の7区・8区の灌木個体数等について示した。7区の個体数は、8区の約2倍であった。

イ 7区切除灌木の樹高

灌木が優占する7区について樹高的ヒストグラムを図3に示した。切除数が最も多かったマユミでは、樹高が150-300cmの間に個体数が最大値を示した。ミズキとコブシはやや低く、コブシで100-150cmの間、ミズキで50-100cmの間で最も個体数が多かった。

ウ 7・8区切除灌木の材積（D³H）と乾物重の関係

7・8区切除灌木の材積（D³H）と乾物重の関係を調べた。個体数の多いマユミとミズキについて図3に示したように、材積と乾物重との間に高い相関が認められた。

エ 落葉及びササ類の現存量

落葉量は種子の発芽と密接な関係があり、特に種子が小さな草本層では落葉層が厚くなると發芽率が悪くなる1)。つまり、落葉量の多さは草本層の植生を変える可能性がある。そこで、調査区の落葉の現存量を調べた。2001年1月に、5区についてその半分の200m²の落葉を採取した。その結果、多少の落枝を含む落葉の乾物重は4.97t/haであった。これは雑木林では平均的な値である。

表4 落葉とササ類の乾物重（ton/ha）

<table>
<thead>
<tr>
<th>管理区域</th>
<th>台地管理区</th>
<th>台地放置区</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>台地管理区</td>
<td>3区</td>
<td>4.3</td>
<td>0.1</td>
</tr>
<tr>
<td>5区</td>
<td>5.5</td>
<td>0.1</td>
<td>5.6</td>
</tr>
<tr>
<td>台地放置区</td>
<td>7区</td>
<td>7.2</td>
<td>0.2</td>
</tr>
<tr>
<td>8区</td>
<td>5.6</td>
<td>1.9</td>
<td>7.5</td>
</tr>
</tbody>
</table>
表5 管理形態の異なる各雑木林の昆虫・クモ類の採集回数
（2000年1月〜2001年1月、毎月1回全13回調査）

<table>
<thead>
<tr>
<th>種類</th>
<th>3区</th>
<th>5区</th>
<th>6区</th>
<th>7区</th>
</tr>
</thead>
<tbody>
<tr>
<td>粉管目</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>婚媒目</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>鳥類目</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>ラマダラ目</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>直翅目</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>ナラフシ目</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>昆虫目</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>サトウムシ目</td>
<td>9</td>
<td>8</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

地上部ササ類の現存量を表4に示した。落葉棲は灌木
株が約7株/ha、台地管理区の3区が最も多く约4.2株/haであった。アズマツザサは圧倒的に
8株で多く、5区ではクマザサがササ類の1/3強を占
めていた。なお、表4で明らかに、ササ類を加え
ると台地設置区の7区と8区は7.3〜7.4株/haで、ほぼ
同じ現存量であった。

(4) 昆虫・クモ類

表5に示すように、昆虫類14目、蛛形類2目、軟体
動物（ハマリ類）を採集した。すべての
区で直翅目、双翅目、膜翅目、クモ目が多
く、種類の分布のため管理地域と設置地域の昆虫・クモ
類の違いは明らかである。しかし、サトウムシ、腹足類
に違いがみられた。サトウムシは6月に10月にかけて
台地設置7区で多数採取されたが、台地管理3、5
区では採れなかった。また、腹足類は台地設置7区
および斜面設置6区で全調査13回中それぞれ9、8回と

図3 台地設置地域の樹高ヒストグラム

図4 7区除去灌木の材積（D/H）と乾物重の関係

2001年1月には、5つのコドラート内に1m×1m区
をおおおの4か所設定し、落葉を採取して乾物重を計
測した。その結果、落葉の乾物重は約5.5t/haとなり年
前の約5t/haとほぼ同じ値であった。そこで他の区につ
いても同じ採取法で落葉の乾物重を求めた。なお、台
地設置区では、灌木除去後に採取した。アズマツザサ
とクマザサ（以下ササ類という）については、草刈り
時に管理区の全量を採取して乾物重を求めた。落葉と
４ まとめ

①調査地は、コナラ-クヌギ群集典型亜群集のシラマギク愛群集であることがわかった。
②台地管理地域では、長期間定期的な人手が加わることにより、林床が明るくなり、草本層が豊かであることがわかった。
③台地放置地域では、灌木やアズマネザサの密度が高く、草本層の種数および被度とも、台地管理地域より少ない。
④斜面放置地域では、複雑な地形のため樹種も多く、草本層の種数も多いかった。
⑤台地管理区の保存は、灌木・ブノウ重にして約5.5t/haとなり昨年の約5.1t/haとほぼ同じ値であった。一般的な台地林の数値であった。
⑥ミズキ等9種の灌木の木本径とブノウ重の間には高い相関があった。
⑦管理地域の昆虫・クモ類は、放置地域より豊かであるとはいえなかった。

おわりにあたり、植生調査に貴重なアドバイスを頂いた東京農工大学の星野義延先生と貴重な調査地を提供してくださった国際基督教大学の皆様に厚く感謝致します。また、ほかにも多くの方々にお世話になりました。厚く感謝致します。

参考文献

1）亀山章編：雑木林の植生管理一その生態と共生の技術，pp. ソフトサイエンス社（1996）
2）森林立地調査編集委員会編：森林立地調査法，博友社，pp. 43-87（1999）
3）東京都：東京都植生調査報告書，付表東京都の植生表（昭和62年3月）
4）保全地域雑木林萌芽更新調査：報告書平成9年度：
Fundamental Research on Coppice Forest Vegetation and Environmental Factors.

(2) Biota in managed and non-managed coppice forests

Kuniko Suga, Takeshi Oohashi and Masahiko Ohno

Summary

In order to determine a management method of coppice forests near the urban district of Tokyo, present vegetation and community structures of arthropods forests were studied in managed and non-managed forests. The vegetation of these forests was regarded as association of Quercus serrata and Quercus acutissima and second association of Aster scaber. In a managed coppice forest on a plateau, where shrubs and weeds were cut out and fallen leaves were gathered out every winter season, the floor of the managed forest was light and herbaceous plants were diverse. On the other hand, in the non-managed coppice forest on a plateau, shrubs and Pleioblastus chino grew thick, and the number of species and the coverage for herbaceous layer was smaller than those in managed forest. In non-managed coppice forests on a slope, the number of tree species was relatively large and the vegetation of herbaceous layer was rich compared with those of the non-managed coppice forest in the plateau. This may be attributed to the complicated landform of the slope. Arthropod community of the managed forest was not necessarily more diverse than that of the non-managed forests. Fallen leaves weighed about 5.5 tons per 1 ha in the forests on the plateau, and it was almost the same as that of the general coppice.

Keywords: coppice forest, vegetation, species diversity, Pleioblastus chino, Quercus serrata, Quercus acutissima, forest management