〔報告〕

# 都市排水の環境影響に関する研究(その4) -浅川の底生動物に及ぼす下水処理水の影響-

**竹内 健 和波 一夫 森岡 浩然\* 三島 寿一\*** (\*工学院大学工学部)

# 1 はじめに

下水道の普及に伴い、都市部を流れる河川の水質は 大きく改善された。しかし、河川水量に占める下水処理水(以下、処理水)の割合が年々増加し、その割合 が90%を超える河川も見られるようになった。このような河川では放流先水域の水量や水質が処理水によって大きく左右されることとなり、その水域の生態系へ与える処理水の影響は大きいと考えられる<sup>1,2)</sup>。放流される処理水が増加している現在、放流先水域に生息する水生生物と処理水との関係を評価することは極めて重要な課題になってきているが、現時点ではこの関係についての検討は十分に行われていない状況にある。そこで、多摩川中流部最大の支川である浅川を対象とし、処理水が流入する地点前後における底生動物の生息実態について調査を行った。その結果について、報告する。

# 2 調査方法

# (1)調査地点及び調査日、回数

調査地点を図1に示す。また、各地点における調査 日を表1に示す。北野下水処理場の放流口を基点として浅川の上流側に4地点(St.a~St.d)、下流側に3 地点(St.e~St.i)の合計7地点を調査地点とした。 季節変動を把握するため、2006年8月(夏季)、10 月(秋季)、2007年1月(冬季)、3月(春季)に各 1回ずつ、合計4回の調査を行った。

# (2) 環境測定及び水質分析

図1に示した7地点において、工場排水試験方法JIS-K0102に従って気温、水温、透視度、残留塩素、水素イオン濃度(pH)、電気伝導度(EC)、溶存酸素量(DO)、生物化学的酸素要求量(BOD)、浮遊物質量(SS)、窒素、りん、全亜鉛等の測定を行った。また、St.d及びSt.e、St.fの3地点におい

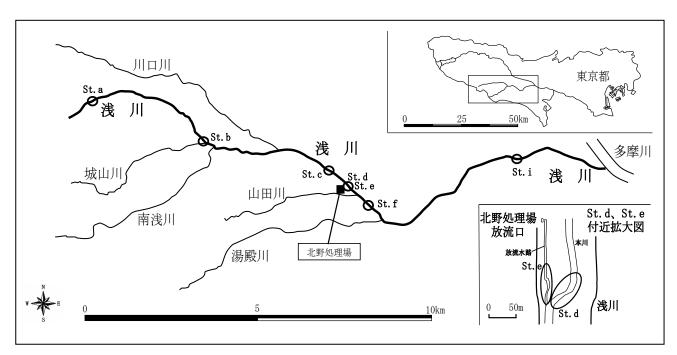



図1 調査地点

表1 地点名と調査日

| No. | 地点名           | 調査日            |                 |                |               |  |  |  |  |
|-----|---------------|----------------|-----------------|----------------|---------------|--|--|--|--|
| 1   | St.a 陵北大橋     | 0000#          | 0000F           | 00077          | 0007/5        |  |  |  |  |
| 2   | St.b 中央道・北浅川橋 | 2006年<br>8月16日 | 2006年<br>10月18日 | 2007年<br>1月24日 | 2007年<br>3月7日 |  |  |  |  |
| 3   | St.c 大和田橋     | 0)110          | 10/110          | 1/,511         | 0/11 F        |  |  |  |  |
| 4   | St.d 新浅川橋     |                |                 |                |               |  |  |  |  |
| 5   | St.e 放流水路     | 2006年          | 2006年           | 2007年          | 2007年         |  |  |  |  |
| 6   | St.f JR中央線鉄橋  | 8月15日          | 10月17日          | 1月23日          | 3月6日          |  |  |  |  |
| 7   | St.i 高幡橋      |                |                 |                |               |  |  |  |  |

ては、水質調査方法(昭和46年9月30日環水管第30号)<sup>3)</sup>に従って河川流量の測定を行った。

# (3) 底生動物調査

図1に示した7地点において、東京都環境局が実施した水生生物調査<sup>4)</sup>の方法に準拠し、定量と定性の2つの方法で採集を行った。採集した生物は10%ホルマリンで固定した後に、種の同定及び必要な計測等を行った。

# 3 結果

### (1)環境測定及び水質分析

各地点における環境測定及び水質分析の結果を表2に示す。St.fの河川水量はSt.d及びSt.e、山田川の河川水量の合計量と等しくなるはずであるが、今回の調査ではSt.fの河川水量は合計量に比べて少なかった。これは、St.dからSt.fの間に河川水が伏流していると推測された。

St. d と St. f の河川水質を比較すると、水温は St. f の方が高く、1 月及び 3 月では約 5℃も高くなった。また、E C 及びB O D、窒素、りんについても St. f の方が高かった。一方、p H 及びD O は St. f の方が低かった。水量のほぼ 100%が処理水で占められている St. e とその他の地点を比較すると、p H 及びD O については St. e が最も低く、水温及びE C、B O D、窒素、りんについては St. e が最も高かった。

#### (2) 底生動物の採集結果

各地点における底生動物の採集結果を表2及び表4-1から表4-4に示す。また、St.aから St.iまでの区間における総種類数(定量及び定性採集)及び個体数(定量採集)の縦断変化を図2に示す。St.eは水量のほぼ 100%が処理水で占められる水路内にあるため、総種類数及び個体数の変化を示す図2の折れ線グラフ上には表示しなかった。なお、底生動物の採集

表 2 環境測定及び水質分析結果

|     |                             |                                                                                                              |                                                                                                                                                                                                                                                                                                                               | St. a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | St. b                                                                                                                                                                                                                                                                      | St. c                                                                                                                                                                                                                                                                   | St. d                                                                                                                                                                                                                                                                                                                                                                                                     | St. e                                                                                                                                                                                                                                                  | St. f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | St. i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|-----------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                             | 天候                                                                                                           |                                                                                                                                                                                                                                                                                                                               | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 曇り                                                                                                                                                                                                                                                                         | 雨                                                                                                                                                                                                                                                                       | 曇り                                                                                                                                                                                                                                                                                                                                                                                                        | 曇り                                                                                                                                                                                                                                                     | 曇り                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 曇り                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                             | 気温                                                                                                           | (℃)                                                                                                                                                                                                                                                                                                                           | 27. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25. 7                                                                                                                                                                                                                                                                      | 25. 3                                                                                                                                                                                                                                                                   | 24.9                                                                                                                                                                                                                                                                                                                                                                                                      | 25. 9                                                                                                                                                                                                                                                  | 29. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 環                           | 水温                                                                                                           | (°C)                                                                                                                                                                                                                                                                                                                          | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19. 9                                                                                                                                                                                                                                                                      | 20. 7                                                                                                                                                                                                                                                                   | 21.3<br>>50                                                                                                                                                                                                                                                                                                                                                                                               | 24. 1<br>>50                                                                                                                                                                                                                                           | 23. 1<br>>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24. 0<br>>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 境                           | 透視度<br>残留塩素                                                                                                  | (cm)<br>(mg/0)                                                                                                                                                                                                                                                                                                                | >50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >50                                                                                                                                                                                                                                                                        | >50                                                                                                                                                                                                                                                                     | /5U<br>-                                                                                                                                                                                                                                                                                                                                                                                                  | /5U<br>-                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /50<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 測定                          | pН                                                                                                           | (mg/ v/                                                                                                                                                                                                                                                                                                                       | 7. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.6                                                                                                                                                                                                                                                                        | 7.8                                                                                                                                                                                                                                                                     | 7. 9                                                                                                                                                                                                                                                                                                                                                                                                      | 7. 0                                                                                                                                                                                                                                                   | 7. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 及                           | EC                                                                                                           | (ms/m)                                                                                                                                                                                                                                                                                                                        | 16. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.4                                                                                                                                                                                                                                                                       | 17.8                                                                                                                                                                                                                                                                    | 17.7                                                                                                                                                                                                                                                                                                                                                                                                      | 30. 5                                                                                                                                                                                                                                                  | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | U.                          | DO                                                                                                           | (mg/0)                                                                                                                                                                                                                                                                                                                        | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.3                                                                                                                                                                                                                                                                        | 9.3                                                                                                                                                                                                                                                                     | 8.8                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3                                                                                                                                                                                                                                                    | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8   | 水質                          | BOD                                                                                                          | (mg/0)                                                                                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                        | 1. 1                                                                                                                                                                                                                                                                    | 1.2                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                    | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 月   | 分析                          | SS<br>水深                                                                                                     | (mg/l)                                                                                                                                                                                                                                                                                                                        | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                        | 3. 7                                                                                                                                                                                                                                                                    | 1. 5<br>0. 4                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                    | 2. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 101                         | 流速                                                                                                           | (m)<br>(m <sup>3</sup> /s)                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                       | 0. 4                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 2                                                                                                                                                                                                                                                   | 0. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                             | 川幅                                                                                                           | (m)                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                       | 14.0                                                                                                                                                                                                                                                                                                                                                                                                      | 3. 3                                                                                                                                                                                                                                                   | 15. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                             | 流量                                                                                                           | $(m^3/s)$                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                       | 3.61                                                                                                                                                                                                                                                                                                                                                                                                      | 0.62                                                                                                                                                                                                                                                   | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 底                           | 総種類数                                                                                                         | ζ                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 生                           | 個体数<br>汚濁指数                                                                                                  | <b>'</b>                                                                                                                                                                                                                                                                                                                      | 1, 276<br>1. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 794<br>1. 4                                                                                                                                                                                                                                                                | 299<br>1. 9                                                                                                                                                                                                                                                             | 59<br>2. 3                                                                                                                                                                                                                                                                                                                                                                                                | 2, 222                                                                                                                                                                                                                                                 | 196<br>2. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 196<br>2. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 動物                          | 水質判定                                                                                                         |                                                                                                                                                                                                                                                                                                                               | βms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0S                                                                                                                                                                                                                                                                         | βms                                                                                                                                                                                                                                                                     | βms                                                                                                                                                                                                                                                                                                                                                                                                       | α ms                                                                                                                                                                                                                                                   | βms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | βms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 199                         | 多様性指                                                                                                         |                                                                                                                                                                                                                                                                                                                               | 3. 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. 26                                                                                                                                                                                                                                                                      | 3. 42                                                                                                                                                                                                                                                                   | 3. 88                                                                                                                                                                                                                                                                                                                                                                                                     | 1.71                                                                                                                                                                                                                                                   | 3. 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                             | 天候                                                                                                           |                                                                                                                                                                                                                                                                                                                               | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 晴れ                                                                                                                                                                                                                                                                         | 晴れ                                                                                                                                                                                                                                                                      | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                        | 晴れ                                                                                                                                                                                                                                                     | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                             | 気温                                                                                                           | (°C)                                                                                                                                                                                                                                                                                                                          | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.4                                                                                                                                                                                                                                                                       | 18.8                                                                                                                                                                                                                                                                    | 18.9                                                                                                                                                                                                                                                                                                                                                                                                      | 22. 2                                                                                                                                                                                                                                                  | 24. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 環                           | 水温                                                                                                           | (°C)                                                                                                                                                                                                                                                                                                                          | 17. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17. 7                                                                                                                                                                                                                                                                      | 16. 7                                                                                                                                                                                                                                                                   | 16.9                                                                                                                                                                                                                                                                                                                                                                                                      | 22. 2                                                                                                                                                                                                                                                  | 20. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 境                           | 透視度<br>残留塩素                                                                                                  | (cm)<br>(mg/0)                                                                                                                                                                                                                                                                                                                | >50<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >50<br><0.05                                                                                                                                                                                                                                                               | >50<br><0.05                                                                                                                                                                                                                                                            | >50<br><0.05                                                                                                                                                                                                                                                                                                                                                                                              | >50<br><0.05                                                                                                                                                                                                                                           | >50<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >50<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 測定                          | pH                                                                                                           |                                                                                                                                                                                                                                                                                                                               | 7. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. 5                                                                                                                                                                                                                                                                       | 7. 8                                                                                                                                                                                                                                                                    | 7. 8                                                                                                                                                                                                                                                                                                                                                                                                      | 6.8                                                                                                                                                                                                                                                    | 7. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 及                           | EC                                                                                                           | (ms/m)                                                                                                                                                                                                                                                                                                                        | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.7                                                                                                                                                                                                                                                                       | 19.3                                                                                                                                                                                                                                                                    | 19.3                                                                                                                                                                                                                                                                                                                                                                                                      | 34. 2                                                                                                                                                                                                                                                  | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | び水                          | DO                                                                                                           | $(mg/\ell)$                                                                                                                                                                                                                                                                                                                   | 9. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.8                                                                                                                                                                                                                                                                        | 10.1                                                                                                                                                                                                                                                                    | 10.2                                                                                                                                                                                                                                                                                                                                                                                                      | 6. 9                                                                                                                                                                                                                                                   | 7. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10  | 質                           | BOD                                                                                                          | (mg/0)                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8                                                                                                                                                                                                                                                    | 0. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 月   | 分析                          | SS<br>水深                                                                                                     | (mg/0)                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                     | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                      | 4. 0<br>0. 2                                                                                                                                                                                                                                           | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 101                         | 流速                                                                                                           | $(m^3/s)$                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                       | 0. 6                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 9                                                                                                                                                                                                                                                   | 0. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                             | 川幅                                                                                                           | (m)                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                       | 15.7                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5                                                                                                                                                                                                                                                    | 24. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                             | 流量                                                                                                           | $(\text{m}^3/\text{s})$                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                       | 3. 37                                                                                                                                                                                                                                                                                                                                                                                                     | 0.86                                                                                                                                                                                                                                                   | 4. 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 底                           | 総種類数<br>個体数                                                                                                  | ζ                                                                                                                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48                                                                                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 生                           | 個14級<br>汚濁指数                                                                                                 | 7                                                                                                                                                                                                                                                                                                                             | 172<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 262<br>1. 7                                                                                                                                                                                                                                                                | 180<br>1.5                                                                                                                                                                                                                                                              | 111<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                | 285<br>3. 4                                                                                                                                                                                                                                            | 45<br>2. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 183<br>2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 動物                          | 水質判定                                                                                                         |                                                                                                                                                                                                                                                                                                                               | βms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | βms                                                                                                                                                                                                                                                                        | os                                                                                                                                                                                                                                                                      | βms                                                                                                                                                                                                                                                                                                                                                                                                       | α ms                                                                                                                                                                                                                                                   | βms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | β ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 123                         | 多様性指                                                                                                         |                                                                                                                                                                                                                                                                                                                               | 3.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. 75                                                                                                                                                                                                                                                                      | 3. 17                                                                                                                                                                                                                                                                   | 3. 18                                                                                                                                                                                                                                                                                                                                                                                                     | 2.82                                                                                                                                                                                                                                                   | 3. 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                             | 天候                                                                                                           |                                                                                                                                                                                                                                                                                                                               | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 曇り                                                                                                                                                                                                                                                                         | 曇り                                                                                                                                                                                                                                                                      | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                        | 晴れ                                                                                                                                                                                                                                                     | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 晴れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                             | 気温                                                                                                           | (°C)                                                                                                                                                                                                                                                                                                                          | 8. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.3                                                                                                                                                                                                                                                                        | 5. 7                                                                                                                                                                                                                                                                    | 4.8                                                                                                                                                                                                                                                                                                                                                                                                       | 9. 1                                                                                                                                                                                                                                                   | 11. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 環                           | 水温<br>透視度                                                                                                    | (℃)<br>(cm)                                                                                                                                                                                                                                                                                                                   | 12. 6<br>>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11. 6<br>>50                                                                                                                                                                                                                                                               | 9. 7<br>>50                                                                                                                                                                                                                                                             | 8. 3<br>>50                                                                                                                                                                                                                                                                                                                                                                                               | 17. 4<br>>50                                                                                                                                                                                                                                           | 13. 5<br>>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11. 4<br>>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                             |                                                                                                              |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1   | 境                           | 残留塩素                                                                                                         | (mg/Q)                                                                                                                                                                                                                                                                                                                        | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.05                                                                                                                                                                                                                                                                      | <0.05                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.05                                                                                                                                                                                                                                                 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 測                           |                                                                                                              | (mg/Q)                                                                                                                                                                                                                                                                                                                        | <0.05<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.05<br>7.9                                                                                                                                                                                                                                                               | <0.05<br>8.3                                                                                                                                                                                                                                                            | <0.05<br>8.1                                                                                                                                                                                                                                                                                                                                                                                              | <0.05<br>7.0                                                                                                                                                                                                                                           | <0.05<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 測定及                         | 残留塩素<br>pH<br>EC                                                                                             | (ms/m)                                                                                                                                                                                                                                                                                                                        | 7. 2<br>16. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. 9<br>18. 3                                                                                                                                                                                                                                                              | 8.3<br>19.2                                                                                                                                                                                                                                                             | 8. 1<br>19. 2                                                                                                                                                                                                                                                                                                                                                                                             | 7. 0<br>37. 5                                                                                                                                                                                                                                          | 7. 7<br>23. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05<br>7.7<br>26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 測定及び                        | 残留塩素<br>pH<br>EC<br>DO                                                                                       | (ms/m)<br>(mg/0)                                                                                                                                                                                                                                                                                                              | 7. 2<br>16. 2<br>10. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7. 9<br>18. 3<br>11. 3                                                                                                                                                                                                                                                     | 8. 3<br>19. 2<br>12. 3                                                                                                                                                                                                                                                  | 8. 1<br>19. 2<br>13. 1                                                                                                                                                                                                                                                                                                                                                                                    | 7. 0<br>37. 5<br>6. 6                                                                                                                                                                                                                                  | 7. 7<br>23. 8<br>9. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.05<br>7.7<br>26.8<br>10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1   | 測定及び水質                      | 残留塩素<br>pH<br>EC<br>DO<br>BOD                                                                                | (ms/m)<br>(mg/0)<br>(mg/0)                                                                                                                                                                                                                                                                                                    | 7. 2<br>16. 2<br>10. 1<br>0. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. 9<br>18. 3<br>11. 3<br>0. 7                                                                                                                                                                                                                                             | 8. 3<br>19. 2<br>12. 3<br>0. 7                                                                                                                                                                                                                                          | 8. 1<br>19. 2<br>13. 1<br>0. 6                                                                                                                                                                                                                                                                                                                                                                            | 7. 0<br>37. 5<br>6. 6<br>4. 8                                                                                                                                                                                                                          | 7. 7<br>23. 8<br>9. 9<br>1. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05<br>7.7<br>26.8<br>10.7<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 月 | 測定及び                        | 残留塩素<br>pH<br>EC<br>DO                                                                                       | (ms/m)<br>(mg/0)                                                                                                                                                                                                                                                                                                              | 7. 2<br>16. 2<br>10. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7. 9<br>18. 3<br>11. 3                                                                                                                                                                                                                                                     | 8. 3<br>19. 2<br>12. 3                                                                                                                                                                                                                                                  | 8. 1<br>19. 2<br>13. 1                                                                                                                                                                                                                                                                                                                                                                                    | 7. 0<br>37. 5<br>6. 6                                                                                                                                                                                                                                  | 7. 7<br>23. 8<br>9. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.05<br>7.7<br>26.8<br>10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 測定及び水質分                     | 残留塩素<br>pH<br>EC<br>DO<br>BOD<br>SS                                                                          | (ms/m)<br>(mg/e)<br>(mg/e)<br>(mg/e)                                                                                                                                                                                                                                                                                          | 7. 2<br>16. 2<br>10. 1<br>0. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. 9<br>18. 3<br>11. 3<br>0. 7                                                                                                                                                                                                                                             | 8. 3<br>19. 2<br>12. 3<br>0. 7                                                                                                                                                                                                                                          | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7                                                                                                                                                                                                                                                                                                                                                                    | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6                                                                                                                                                                                                                  | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.05<br>7.7<br>26.8<br>10.7<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 測定及び水質分                     | 残留塩素<br>pH<br>EC<br>DO<br>BOD<br>SS<br>水深<br>流速<br>川幅                                                        | (ms/m)<br>(mg/0)<br>(mg/0)<br>(mg/0)<br>(m)<br>(m)<br>(m <sup>3</sup> /s)<br>(m)                                                                                                                                                                                                                                              | 7. 2<br>16. 2<br>10. 1<br>0. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. 9<br>18. 3<br>11. 3<br>0. 7                                                                                                                                                                                                                                             | 8. 3<br>19. 2<br>12. 3<br>0. 7                                                                                                                                                                                                                                          | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9                                                                                                                                                                                                                                                                                                                                           | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2                                                                                                                                                                                          | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8<br>0. 3<br>0. 7<br>8. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05<br>7.7<br>26.8<br>10.7<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 測定及び水質分                     | 残留塩素<br>pH<br>EC<br>DO<br>BOD<br>SS<br>水深<br>流速<br>川幅<br>流量                                                  | (ms/m)<br>(mg/0)<br>(mg/0)<br>(mg/0)<br>(m)<br>(m)<br>(m3/s)<br>(m)<br>(m3/s)                                                                                                                                                                                                                                                 | 7. 2<br>16. 2<br>10. 1<br>0. 4<br>0. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.9<br>18.3<br>11.3<br>0.7<br>3.2                                                                                                                                                                                                                                          | 8. 3<br>19. 2<br>12. 3<br>0. 7<br>0. 8                                                                                                                                                                                                                                  | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29                                                                                                                                                                                                                                                                                                                                  | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2<br>0. 99                                                                                                                                                                                 | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8<br>0. 3<br>0. 7<br>8. 2<br>2. 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.05 7.7 26.8 10.7 0.9 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 測定及び水質分析                    | 残留塩素<br>pH<br>EC<br>DO<br>BOD<br>SS<br>水深<br>流速<br>川幅                                                        | (ms/m)<br>(mg/0)<br>(mg/0)<br>(mg/0)<br>(m)<br>(m)<br>(m3/s)<br>(m)<br>(m3/s)                                                                                                                                                                                                                                                 | 7. 2<br>16. 2<br>10. 1<br>0. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. 9<br>18. 3<br>11. 3<br>0. 7                                                                                                                                                                                                                                             | 8. 3<br>19. 2<br>12. 3<br>0. 7                                                                                                                                                                                                                                          | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9                                                                                                                                                                                                                                                                                                                                           | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2<br>0. 99                                                                                                                                                                                 | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8<br>0. 3<br>0. 7<br>8. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05<br>7.7<br>26.8<br>10.7<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 測定及び水質分析 底生                 | 残留塩素<br>pH<br>EC<br>DO<br>BOD<br>SS<br>水深<br>流速<br>川流量<br>総種類数                                               | (ms/m)<br>(mg/e)<br>(mg/e)<br>(mg/e)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                                                       | 7. 2<br>16. 2<br>10. 1<br>0. 4<br>0. 7<br>-<br>-<br>-<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>-<br>38                                                                                                                                                                                                                | 8. 3<br>19. 2<br>12. 3<br>0. 7<br>0. 8<br>-<br>-<br>-<br>37                                                                                                                                                                                                             | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29                                                                                                                                                                                                                                                                                                                                  | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2<br>0. 99                                                                                                                                                                                 | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8<br>0. 3<br>0. 7<br>8. 2<br>2. 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.05 7.7 26.8 10.7 0.9 4.1 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 測定及び水質分析                    | 残留       pH       EC       D0       BOD       SS       水流川流総個汚水       類数指判       数据       数据       数据        | (ms/m)<br>(mg/e)<br>(mg/e)<br>(mg/e)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                           | 7. 2 16. 2 10. 1 0. 4 0. 7 54 264 1. 9 $\beta$ ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>-<br>38<br>388<br>1. 3<br>os                                                                                                                                                                                      | 8. 3<br>19. 2<br>12. 3<br>0. 7<br>0. 8<br>-<br>-<br>-<br>-<br>37<br>812<br>1. 4<br>os                                                                                                                                                                                   | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>203<br>1. 4<br>os                                                                                                                                                                                                                                                                                                             | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2<br>0. 99<br>11<br>1, 521<br>3. 3<br>\$\alpha\$ ms                                                                                                                                        | $\begin{array}{c} 7. 7 \\ 23. 8 \\ 9. 9 \\ 1. 5 \\ 2. 8 \\ \hline 0. 3 \\ 0. 7 \\ 8. 2 \\ 2. 42 \\ \hline 31 \\ 237 \\ 1. 9 \\ \beta \mathrm{ms} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>&lt;0.05 7.7 26.8 10.7 0.9 4.1 35 392 1.5 os</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 測定及び水質分析 底生動                | 残留 塩素 pH EC DO BOD SS 水流川流総 個 汚水 を                                                                           | (ms/m)<br>(mg/e)<br>(mg/e)<br>(mg/e)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                           | 7. 2<br>16. 2<br>10. 1<br>0. 4<br>0. 7<br>-<br>-<br>-<br>54<br>264<br>1. 9<br>\$\beta\$ ms<br>4. 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>38<br>388<br>1. 3<br>os<br>2. 76                                                                                                                                                                                  | 8. 3<br>19. 2<br>12. 3<br>0. 7<br>0. 8<br>-<br>-<br>-<br>37<br>812<br>1. 4<br>os<br>1. 31                                                                                                                                                                               | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>203<br>1. 4<br>os<br>2. 25                                                                                                                                                                                                                                                                                                    | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2<br>0. 99<br>11<br>1, 521<br>3. 3<br>\$\alpha\$ ms<br>2. 47                                                                                                                               | $7.7$ $23.8$ $9.9$ $1.5$ $2.8$ $0.3$ $0.7$ $8.2$ $2.42$ $31$ $237$ $1.9$ $\beta$ ms $2.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05 7.7 26.8 10.7 0.9 4.1 35 392 1.5 os 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 測定及び水質分析 底生動                | 残留                                                                                                           | (ms/m)<br>(mg/e)<br>(mg/e)<br>(mg/e)<br>(m)<br>(m)<br>(m³/s)<br>(m)<br>(m³/s)                                                                                                                                                                                                                                                 | 7.2<br>16.2<br>10.1<br>0.4<br>0.7<br>-<br>-<br>-<br>54<br>264<br>1.9<br>βms<br>4.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>38<br>388<br>1.3<br>os<br>2.76                                                                                                                                                                                         | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31                                                                                                                                                                                      | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>203<br>1.4<br>os<br>2.25                                                                                                                                                                                                                                                                                                               | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>αms<br>2.47                                                                                                                                                     | 7.7<br>23.8<br>9.9<br>1.5<br>2.8<br>0.3<br>0.7<br>8.2<br>2.42<br>31<br>237<br>1.9<br>βms<br>2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>&lt;0.05</li> <li>7.7</li> <li>26.8</li> <li>10.7</li> <li>0.9</li> <li>4.1</li> <li>-</li> <li>-</li> <li>-</li> <li>35</li> <li>392</li> <li>1.5</li> <li>os</li> <li>2.25</li> <li>晴れ</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 測定及び水質分析 底生動                | 残留                                                                                                           | (ms/m)<br>(mg/e)<br>(mg/e)<br>(mg/e)<br>(m)<br>(m)<br>(m³/s)<br>(m)<br>(m³/s)                                                                                                                                                                                                                                                 | 7.2<br>16.2<br>10.1<br>0.4<br>0.7<br>-<br>-<br>-<br>54<br>264<br>1.9<br>$\beta$ ms<br>4.32<br>晴れ<br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>38<br>388<br>1.3<br>os<br>2.76                                                                                                                                                                                         | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>時れ                                                                                                                                                                                     | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>203<br>1.4<br>os<br>2.25<br>睛れ                                                                                                                                                                                                                                                                                                         | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>αms<br>2.47<br>晴れ<br>15.1                                                                                                                                       | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8<br>0. 3<br>0. 7<br>8. 2<br>2. 42<br>31<br>237<br>1. 9<br>β ms<br>2. 69<br>πth<br>17. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>&lt;0.05</li> <li>7.7</li> <li>26.8</li> <li>10.7</li> <li>0.9</li> <li>4.1</li> <li>-</li> <li>-</li> <li>-</li> <li>35</li> <li>392</li> <li>1.5</li> <li>os</li> <li>2.25</li> <li>晴れ</li> <li>17.2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 測定及び水質分析 底生動物 環             | 残留                                                                                                           | (ms/m)<br>(mg/e)<br>(mg/e)<br>(mg/e)<br>(m)<br>(m)<br>(m³/s)<br>(m)<br>(m³/s)                                                                                                                                                                                                                                                 | 7.2<br>16.2<br>10.1<br>0.4<br>0.7<br>-<br>-<br>-<br>54<br>264<br>1.9<br>βms<br>4.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>38<br>388<br>1.3<br>os<br>2.76                                                                                                                                                                                         | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31                                                                                                                                                                                      | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>203<br>1.4<br>os<br>2.25                                                                                                                                                                                                                                                                                                               | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>αms<br>2.47                                                                                                                                                     | 7.7<br>23.8<br>9.9<br>1.5<br>2.8<br>0.3<br>0.7<br>8.2<br>2.42<br>31<br>237<br>1.9<br>βms<br>2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>&lt;0.05</li> <li>7.7</li> <li>26.8</li> <li>10.7</li> <li>0.9</li> <li>4.1</li> <li>-</li> <li>-</li> <li>-</li> <li>35</li> <li>392</li> <li>1.5</li> <li>os</li> <li>2.25</li> <li>時れ</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 測定及び水質分析 底生動物 環境            | 残留<br>BOD<br>BOD<br>SS<br>水流川流総個汚水多天気水<br>類数指判性<br>類数指判性                                                     | (ms/m) (mg/e) (mg/e) (mg/e) (m) (m³/s) (m) (m³/s) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t                                                                                                                                                                                                                                      | 7. 2<br>16. 2<br>10. 1<br>0. 4<br>0. 7<br>-<br>-<br>-<br>54<br>264<br>1. 9<br>$\beta$ ms<br>4. 32<br>時れ<br>9. 8<br>14. 2<br>>50<br><0. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>-<br>38<br>388<br>1.3<br>os<br>2.76<br>時れ<br>9.8<br>13.6<br>>50<br><0.05                                                                                                                                               | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>時れ<br>7.1<br>10.8<br>>50<br><0.05                                                                                                                                            | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>203<br>1. 4<br>os<br>2. 25<br>時れ<br>11. 5<br>12. 8<br>>50<br><0. 05                                                                                                                                                                                                                                                           | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2<br>0. 99<br>11<br>1, 521<br>3. 3<br>α ms<br>2. 47<br>ifi. 1<br>18. 9<br>>50<br><0. 05                                                                                                    | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8<br>0. 3<br>0. 7<br>8. 2<br>2. 42<br>31<br>237<br>1. 9<br>\$\mu\$ms<br>2. 69<br>\textrm{ir}\mu\$<br>17. 9<br>>50<br><0. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.05<br>7.7<br>26.8<br>10.7<br>0.9<br>4.1<br>———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 測定及び水質分析 底生動物 環境測定          | 残留 H EC DO BOD SS 水流川流総個汚水多天気水透残地 類数指判性 類数指判性性 類數指判性性                                                        | (ms/m) (mg/e) (mg/e) (mg/e) (m) (m) (m³/s) (m) (m³/s) (c) (C) (cm) (mg/e)                                                                                                                                                                                                                                                     | 7. 2<br>16. 2<br>10. 1<br>0. 7<br>-<br>-<br>-<br>54<br>264<br>1. 9<br>8 ms<br>4. 32<br>時れ<br>9. 8<br>14. 22<br>>50<br>(0. 05<br>7. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>-<br>38<br>388<br>1.3<br>0.5<br>2.76<br>時れ<br>9.8<br>13.6<br>>50<br><0.05<br>7.5                                                                                                                                       | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>時れ<br>7.1<br>10.8<br>>50<br>(0.05<br>8.0                                                                                                                                          | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>203<br>1.4<br>os<br>2.25<br>晴れ<br>11.5<br>12.8<br>>50<br>(0.05<br>8.1                                                                                                                                                                                                                                                                  | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>$\alpha$ ms<br>2.47<br><b>時</b><br>#15.1<br>18.9<br>>50<br><0.05<br>6.9                                                                                         | $7.7$ $23.8$ $9.9$ $1.5$ $2.8$ $0.3$ $0.7$ $8.2$ $2.42$ $31$ $237$ $1.9$ $\beta$ ms $2.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt;0.05</li> <li>7.7</li> <li>26.8</li> <li>10.7</li> <li>0.9</li> <li>4.1</li> <li>-</li> <li>-</li> <li>35</li> <li>392</li> <li>1.5</li> <li>os</li> <li>2.25</li> <li>晴れ</li> <li>17.2</li> <li>16.7</li> <li>&gt;50</li> <li>&lt;0.05</li> <li>7.7</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 測定及び水質分析 底生動物 環境測定及         | 费HECDOBOSS水流川流総個汚水多天気水透费HECDOBOSS水流川流総個汚水多天気水透费HECDS水透明整種体濁質樣候温温稅留大量,                                        | (ms/m) (mg/e) (mg/e) (mg/e) (m) (m³/s) (m³/s) な (で) (cm) (mg/e) (ms/m)                                                                                                                                                                                                                                                        | $7.2$ $16.2$ $10.1$ $0.4$ $0.7$ $  54$ $264$ $1.9$ $\beta$ ms $4.32$ 時和 $9.8$ $14.2$ $>50$ $<0.05$ $7.4$ $15.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>-<br>38<br>388<br>1. 3<br>os<br>2. 76<br>時<br>13. 6<br>>50<br><0. 05<br>7. 5<br>20. 0                                                                                                                             | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>時れ<br>7.1<br>10.8<br>>50<br><0.05<br>8.0                                                                                                                                          | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>203<br>1. 4<br>os<br>2. 25<br><b>iii</b><br>11. 5<br>12. 8<br>>50<br><0.05<br>8. 1<br>14. 7                                                                                                                                                                                                                                   | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>αms<br>2.47<br>iii<br>15.1<br>18.9<br>>50<br><0.05<br>6.9<br>42.1                                                                                               | $\begin{array}{c} 7.\ 7 \\ 23.\ 8 \\ 9.\ 9 \\ 1.\ 5 \\ 2.\ 8 \\ 0.\ 3 \\ 0.\ 7 \\ 8.\ 2 \\ 2.\ 42 \\ \hline 31 \\ 237 \\ 1.\ 9 \\ \beta  \mathrm{ms} \\ 2.\ 69 \\ \hline \mathbf{fil} \ 17.\ 3 \\ 17.\ 9 \\ > 50 \\ < 0.\ 05 \\ 7.\ 2 \\ 29.\ 9 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0. 05<br>7. 7<br>26. 8<br>10. 7<br>0. 9<br>4. 1<br>————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 月   | 測定及び水質分析 底生動物 環境測定及び水       | 残时 B B B B B B B B B B B B B B B B B B B                                                                     | (ms/m) (mg/0) (mg/0) (mg/0) (m) (m³/s) (m) (m³/s) (x) (x) (C) (cm) (mg/0) (ms/m) (mg/0)                                                                                                                                                                                                                                       | 7. 2<br>16. 2<br>10. 1<br>0. 4<br>0. 7<br>-<br>-<br>54<br>264<br>1. 9<br>βms<br>4. 32<br>時れ<br>9. 8<br>14. 2<br>>50<br><0. 05<br>7. 4<br>15. 3<br>11. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>-<br>38<br>388<br>1.3<br>os<br>2.76<br>時れ<br>9.8<br>(3.6)<br>>50<br><0.05<br>7.5<br>20.0<br>10.8                                                                                                                       | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>時れ<br>7.1<br>10.8<br>>50<br>(0.05<br>8.0                                                                                                                                          | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>203<br>1. 4<br>os<br>2. 25<br>時れ<br>11. 5<br>12. 8<br>>50<br><0. 05<br>8. 1<br>14. 7<br>11. 1                                                                                                                                                                                                                                 | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>$\alpha$ ms<br>2.47<br><b>時</b><br>#15.1<br>18.9<br>>50<br><0.05<br>6.9                                                                                         | $\begin{array}{c} 7, 7 \\ 23, 8 \\ 9, 9 \\ 1, 5 \\ 2, 8 \\ 0, 3 \\ 0, 7 \\ 2, 42 \\ \hline 31 \\ 237 \\ 1, 9 \\ \beta \mathrm{ms} \\ 2, 69 \\ \hline \mathfrak{mt} \\ 17, 9 \\ > 50 \\ < 0, 05 \\ 7, 2 \\ 29, 9 \\ 7, 4 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0. 05<br>7. 7<br>26. 8<br>10. 7<br>0. 9<br>4. 1<br>————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 月 3 | 測定及び水質分析 底生動物 環境測定及び水質      | 费HECDOBOSS水流川流総個汚水多天気水透费HECDOBOSS水流川流総個汚水多天気水透费HECDS水透明整種体濁質樣候温温稅留大量,                                        | (ms/m) (mg/e) (mg/e) (mg/e) (m) (m³/s) (m³/s) な (で) (cm) (mg/e) (ms/m)                                                                                                                                                                                                                                                        | $7.2$ $16.2$ $10.1$ $0.4$ $0.7$ $  54$ $264$ $1.9$ $\beta$ ms $4.32$ 時和 $9.8$ $14.2$ $>50$ $<0.05$ $7.4$ $15.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>-<br>38<br>388<br>1. 3<br>os<br>2. 76<br>時<br>13. 6<br>>50<br><0. 05<br>7. 5<br>20. 0                                                                                                                             | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>##ht<br>7.1<br>10.8<br>>50<br><0.05<br>8.0<br>20.6<br>12.1                                                                                                                        | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>203<br>1. 4<br>os<br>2. 25<br><b>iii</b><br>11. 5<br>12. 8<br>>50<br><0.05<br>8. 1<br>14. 7                                                                                                                                                                                                                                   | 7. 0<br>37. 5<br>6. 6<br>4. 8<br>6. 6<br>0. 2<br>1. 1<br>5. 2<br>0. 99<br>11<br>1,521<br>3. 3<br>α ms<br>2. 47<br>iii.1<br>18. 9<br>>50<br><0. 05<br>6. 9<br>42. 1<br>6. 8                                                                             | $\begin{array}{c} 7.\ 7 \\ 23.\ 8 \\ 9.\ 9 \\ 1.\ 5 \\ 2.\ 8 \\ 0.\ 3 \\ 0.\ 7 \\ 8.\ 2 \\ 2.\ 42 \\ \hline 31 \\ 237 \\ 1.\ 9 \\ \beta  \mathrm{ms} \\ 2.\ 69 \\ \hline \mathbf{fil} \ 17.\ 3 \\ 17.\ 9 \\ > 50 \\ < 0.\ 05 \\ 7.\ 2 \\ 29.\ 9 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0. 05<br>7. 7<br>26. 8<br>10. 7<br>0. 9<br>4. 1<br>————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 月   | 測定及び水質分析 底生動物 環境測定及び水       | 费HECDOBOSS水流川流総個汚水多天気水透费时ECDOBOSS水流川流総個汚水多天気水透费时ECDOBOSS水流明監理体獨質樣候温温視留ECDOBOSS水深                             | (ms/m) (mg/2) (mg/2) (mg/2) (mg/2) (mg/2) (m) (m³/s) (m³/s) (x  (**C) (**C*C*) (mg/2) (mg/2) (mg/2) (mg/2) (mg/2)                                                                                                                                                                                                             | 7.2<br>16.2<br>10.1<br>0.4<br>0.7<br>-<br>-<br>-<br>-<br>54<br>264<br>1.9<br>βms<br>4.32<br>時れ<br>9.8<br>14.2<br>>50<br><0.05<br>7.4<br>15.3<br>11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.9<br>18.3<br>11.3<br>0.7<br>3.2<br>-<br>-<br>-<br>-<br>38<br>388<br>1.3<br>os<br>2.76<br>iijh<br>9.8<br>13.6<br>>50<br><0.05<br>7.5<br>20.0<br>10.8                                                                                                                      | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                        | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>20<br>3<br>1. 4<br>0s<br>2. 25<br>時礼<br>11. 5<br>12. 8<br>>50<br><0. 05<br>8. 1<br>14. 7<br>11. 1<br>1. 2<br>4. 6<br>0. 1                                                                                                                                                                                                     | $\begin{array}{c} 7.0 \\ 37.5 \\ 6.6 \\ 4.8 \\ 6.6 \\ 0.2 \\ 1.1 \\ 5.2 \\ 0.99 \\ 11 \\ 1,521 \\ 3.3 \\ \alpha \\ ms \\ 2.47 \\ \hline{\mathfrak{min}} \\ 15.1 \\ 18.9 \\ >50 \\ < 0.05 \\ 6.9 \\ 42.1 \\ 6.8 \\ 2.8 \\ 1.9 \\ 0.1 \\ \end{array}$    | $\begin{array}{c} 7.\ 7 \\ 23.\ 8 \\ 9.\ 9 \\ 1.\ 5 \\ 2.\ 8 \\ 0.\ 3 \\ 0.\ 7 \\ 8.\ 2 \\ 2.\ 42 \\ \hline 31 \\ 237 \\ 1.\ 9 \\ \beta  \mathrm{ms} \\ 2.\ 69 \\ \hline \mathbf{m} \\ 17.\ 3 \\ 17.\ 9 \\ > 50 \\ < 0.\ 05 \\ 7.\ 2 \\ 29.\ 9 \\ 7.\ 4 \\ 3.\ 5 \\ 4.\ 7 \\ \hline 0.\ 3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.05<br>7.7<br>26.8<br>10.7<br>0.9<br>4.1<br>-<br>-<br>-<br>35<br>392<br>1.5<br>os<br>2.25<br>時れ<br>17.2<br>16.7<br>>50<br><0.05<br>7.7<br>29.8<br>9.0<br>1.9<br>8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 月 3 | 測定及び水質分析 底生動物 環境測定及び水質分     | 费时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS 水流川流総個汚水多天気水透残时医院 類数 指判性 度 大                                           | (ms/m) (mg/e) (mg/e) (mg/e) (mg/e) (mg/e) (m) (m³/s) (m³/s) (x  (*C) (*C) (*C) (mg/e)                                                                                                                                                                          | $7.2$ $16.2$ $10.1$ $0.4$ $0.7$ $  54$ $264$ $1.9$ $\beta$ ms $4.32$ $\overrightarrow{m} $ $14.2$ $>50$ $<0.05$ $7.4$ $15.3$ $11.9$ $1.1$ $4.9$ $ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. 9 18. 3 11. 3 0. 7 3. 2 38 388 1. 3 os 2. 76  iii 1. 9 8 13. 6 >50 <0. 05 7. 5 20. 0 10. 8 0. 7 2. 2                                                                                                                                                                    | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>時れ<br>7.1<br>10.8<br>>50<br><0.05<br>8.0<br>20.6<br>12.1<br>0.6<br>1.4                                                                                                       | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>29<br>203<br>1.4<br>os<br>2.25<br>時れ<br>11.5<br>12.8<br>>50<br><0.05<br>8.1<br>14.7<br>11.1<br>1.2<br>4.6<br>0.1                                                                                                                                                                                                                       | $\begin{array}{c} 7.0\\ 37.5\\ 6.6\\ 4.8\\ 6.6\\ 0.2\\ 1.1\\ 5.2\\ 0.99\\ \hline 11\\ 1,521\\ 3.3\\ \alpha\mathrm{ms}\\ 2.47\\ \hline \mathrm{rif}\lambda\\ 15.1\\ 18.9\\ >50\\ <0.05\\ 6.9\\ 42.1\\ 6.8\\ 2.8\\ 1.9\\ \hline 0.1\\ 0.6\\ \end{array}$ | $\begin{array}{c} 7, 7\\ 23, 8\\ 9, 9\\ 1, 5\\ 2, 8\\ 0, 3\\ 0, 7\\ 2, 42\\ \hline 31\\ 237\\ 1, 9\\ \beta \text{ms}\\ 2, 69\\ \hline \text{if}, 3\\ 17, 9\\ >50\\ <0, 05\\ 7, 2\\ 29, 9\\ 7, 4\\ 3, 5\\ 4, 7\\ 0, 3\\ 0, 5\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05 7.7 26.8 10.7 0.9 4.1 35 392 1.5 os 2.25 晴れ 17.2 16.7 >50 <0.05 7.7 29.8 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 月 3 | 測定及び水質分析 底生動物 環境測定及び水質分     | 费时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS水流川土類数指判性 度素 類数指判性                             | (ms/m) (mg/0) (mg/0) (mg/0) (mg/0) (m) (m) (m) (m) (m) (m) (x   (*C) (*C) (*C) (ms/m) (mg/0) (mg/0) (mg/0) (mg/0) (m) (m)                                                                                                                                                                                                     | 7. 2<br>16. 2<br>10. 1<br>0. 4<br>0. 7<br>-<br>-<br>-<br>54<br>264<br>1. 9<br>\$\beta\$ ms<br>4. 32<br>\text{if}\$\lambda\$<br>9. 8<br>14. 2<br>>50<br><0. 05<br>7. 4<br>15. 3<br>11. 9<br>4. 9<br>4. 9<br>11. 9<br>1 | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                      | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                        | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>29<br>203<br>1.4<br>os<br>2.25<br>11.5<br>12.8<br>>50<br>(0.05<br>8.1<br>14.7<br>11.1<br>1.2<br>4.6<br>0.1<br>0.4                                                                                                                                                                                                                      | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>$\alpha$ ms<br>2.47<br>15.1<br>18.9<br>>50<br>(0.05<br>6.9<br>42.1<br>6.8<br>2.8<br>1.9<br>0.1                                                                  | $7.7$ $23.8$ $9.9$ $1.5$ $2.8$ $0.3$ $0.7$ $8.2$ $2.42$ $31$ $237$ $1.9$ $\beta$ ms $2.69$ $17.3$ $17.3$ $17.9$ $>50$ $<0.05$ $7.2$ $29.9$ $7.4$ $3.5$ $4.7$ $0.3$ $0.5$ $7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05<br>7.7<br>26.8<br>10.7<br>0.9<br>4.1<br>-<br>-<br>-<br>35<br>392<br>1.5<br>os<br>2.25<br>時れ<br>17.2<br>16.7<br>>50<br><0.05<br>7.7<br>29.8<br>9.0<br>1.9<br>8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 月 3 | 測定及び水質分析 底生動物 環境測定及び水質分     | 残时ECDOBOSS<br>水流川流総個汚水多天気水透残时ECDOBOS<br>深速幅量種体濁質樣候温温視留<br>BODSS<br>次速幅量種体濁質樣候温温視留<br>BODSS<br>深速幅量           | (ms/m) (mg/0) (mg/0) (mg/0) (mg/0) (ms/m) (m³/s)  (x  { (°C) (°C) (cm) (ms/m) (mg/0) (mg/0) (mg/0) (m³/s) (m³/s)                                                                                                                                                                                                              | 7. 2<br>16. 2<br>10. 1<br>0. 4<br>0. 7<br>-<br>-<br>-<br>54<br>264<br>1. 9<br>8 ms<br>4. 32<br>時れ<br>9. 8<br>14. 2<br>>50<br>(0. 05<br>7. 4<br>15. 3<br>11. 9<br>1. 1<br>4. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>-<br>38<br>388<br>1. 3<br>os<br>2. 76<br>iii) 1. 6<br>>50<br>0. 0. 05<br>7. 5<br>20. 0<br>10. 8<br>0. 7<br>2. 2                                                                                                   | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>10.8<br>>50<br>20.6<br>12.1<br>0.6<br>1.4<br>-<br>-                                                                                                                     | 8. 1<br>19. 2<br>13. 1<br>0. 6<br>5. 7<br>0. 2<br>0. 7<br>17. 9<br>2. 29<br>203<br>1. 4<br>os<br>2. 25<br>時れ<br>11. 5<br>12. 8<br>>50<br>(0. 05<br>8. 1<br>14. 7<br>11. 1<br>1. 2<br>4. 6<br>0. 1<br>0. 1<br>0. 4<br>0. 1                                                                                                                                                                                 | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>α ms<br>2.47<br>時九<br>15.1<br>18.9<br>>50<br><0.05<br>6.9<br>42.1<br>6.8<br>2.8<br>1.9<br>0.1<br>0.6                                                            | 7. 7<br>23. 8<br>9. 9<br>1. 5<br>2. 8<br>0. 3<br>0. 7<br>8. 2<br>2. 42<br>31<br>237<br>1. 9<br>β ms<br>2. 69<br>17. 3<br>17. 9<br>>50<br>(0. 05<br>7. 2<br>29. 9<br>7. 4<br>3. 5<br>4. 7<br>0. 3<br>0. 7<br>5<br>2. 6<br>9 7<br>1. 9<br>9 7<br>1. 9<br>1. 9<br>1. 10<br>1. 10<br>1 | <ul> <li>&lt;0.05</li> <li>7.7</li> <li>26.8</li> <li>10.7</li> <li>0.9</li> <li>4.1</li> <li>-</li> <li>-</li> <li>35</li> <li>392</li> <li>1.5</li> <li>os</li> <li>2.25</li> <li>ifi th</li> <li>17.2</li> <li>16.7</li> <li>&gt;50</li> <li>(0.05</li> <li>7.7</li> <li>29.8</li> <li>9.0</li> <li>1.9</li> <li>1.</li></ul> |
| 月 3 | 測定及び水質分析 底生動物 環境測定及び水質分析 底  | 费时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS水流川土類数指判性 度素 類数指判性                             | (ms/m) (mg/0) (mg/0) (mg/0) (mg/0) (ms/m) (m³/s)  (x  { (°C) (°C) (cm) (ms/m) (mg/0) (mg/0) (mg/0) (m³/s) (m³/s)                                                                                                                                                                                                              | $7.2$ $16.2$ $10.1$ $0.4$ $0.7$ $  54$ $264$ $1.9$ $\beta$ ms $4.32$ $\overrightarrow{m} $ $14.2$ $>50$ $<0.05$ $7.4$ $15.3$ $11.9$ $1.1$ $4.9$ $ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. 9 18. 3 11. 3 0. 7 3. 2 38 388 1. 3 os 2. 76  iii 1. 9 8 13. 6 >50 <0. 05 7. 5 20. 0 10. 8 0. 7 2. 2                                                                                                                                                                    | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>時れ<br>7.1<br>10.8<br>>50<br><0.05<br>8.0<br>20.6<br>12.1<br>0.6<br>1.4                                                                                                       | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>29<br>203<br>1.4<br>os<br>2.25<br>11.5<br>12.8<br>>50<br>(0.05<br>8.1<br>14.7<br>11.1<br>1.2<br>4.6<br>0.1<br>0.4                                                                                                                                                                                                                      | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>$\alpha$ ms<br>2.47<br>15.1<br>18.9<br>>50<br>(0.05<br>6.9<br>42.1<br>6.8<br>2.8<br>1.9<br>0.1                                                                  | $7.7$ $23.8$ $9.9$ $1.5$ $2.8$ $0.3$ $0.7$ $8.2$ $2.42$ $31$ $237$ $1.9$ $\beta$ ms $2.69$ $17.3$ $17.3$ $17.9$ $>50$ $<0.05$ $7.2$ $29.9$ $7.4$ $3.5$ $4.7$ $0.3$ $0.5$ $7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>&lt;0.05</li> <li>7.7</li> <li>26.8</li> <li>10.7</li> <li>0.9</li> <li>4.1</li> <li>-</li> <li>-</li> <li>35</li> <li>392</li> <li>1.5</li> <li>os</li> <li>2.25</li> <li>時れ</li> <li>17.2</li> <li>16.7</li> <li>&gt;50</li> <li>&lt;0.05</li> <li>7.7</li> <li>29.8</li> <li>9.0</li> <li>1.9</li> <li>8.1</li> <li>-</li> <li>-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 月 3 | 測定及び水質分析 底生動物 環境測定及び水質分析    | 费时 EC DO BOD SS 水流川流総個汚水多天気水透喪时 EC DO BOD SS 水流川流総個汚水多天気水透喪时 EC DO BOD SS 水流川流総個汚水多 大気水透喪的 E 東教 指判性 度 案 数 多定 | (ms/m) (mg/0) (mg/0) (mg/0) (mg/0) (m) (m) (m) (m) (m) (x  注  (**C) (**C) (**C) (ms/m) (mg/0) | 7. 2 16. 2 10. 1 0. 4 0. 7 54 264 1. 9 ß ms 4. 32 暗和 9. 8 14. 2 >50 <0. 05 7. 4 15. 3 11. 9 1. 1 4. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>-<br>38<br>388<br>1. 3<br>os<br>2. 76<br>時和<br>9. 8<br>13. 6<br>>50<br><0. 05<br>7. 5<br>20. 0<br>10. 8<br>0. 7<br>2. 2                                                                                           | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>10.8<br>>50<br>(0.05<br>8.0<br>20.6<br>12.1<br>0.6<br>1.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>203<br>1.4<br>os<br>2.25<br>11.5<br>12.8<br>>50<br><0.05<br>8.1<br>14.7<br>11.1<br>2<br>4.6<br>0.1<br>0.4<br>0.1<br>0.5<br>2.25<br>2.25<br>2.25<br>2.25<br>2.25<br>2.25<br>2.25                                                                                                                                                        | 7.0<br>37.5<br>6.6<br>4.8<br>6.6<br>0.2<br>1.1<br>5.2<br>0.99<br>11<br>1,521<br>3.3<br>$\alpha$ ms<br>2.47<br>ifill 18.9<br>>50<br>(0.05<br>6.9<br>42.1<br>6.8<br>2.8<br>1.9<br>0.1<br>0.6<br>3.7<br>1.06<br>17                                        | $\begin{array}{c} 7.\ 7\\ 23.\ 8\\ 9.\ 9\\ 1.\ 5\\ 2.\ 8\\ 0.\ 3\\ 0.\ 7\\ 8.\ 2\\ 2.\ 42\\ \hline 31\\ 237\\ 1.\ 9\\ \beta\mathrm{ms}\\ 2.\ 69\\ \hline \mathbf{m}^{2}\\ 17.\ 3\\ 17.\ 9\\ >50\\ <0.\ 05\\ 7.\ 2\\ 29.\ 9\\ 7.\ 4\\ 3.\ 5\\ 7.\ 2\\ 29.\ 9\\ 7.\ 4\\ 3.\ 5\\ 7.\ 2\\ 22.\ 3\\ 27\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.05 7.7 26.8 10.7 0.9 4.1 35 392 1.5 os 2.25 時れ 17.2 16.7 >50 <0.05 7.7 29.8 9.0 1.9 8.1 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 月 3 | 測定及び水質分析 底生動物 環境測定及び水質分析 底生 | 残时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS水流川流総個汚水多天気水透残时ECDOBOD SS水流川流総個類数 指別性 度素 數字 表  | (ms/m) (mg/0) (mg/0) (mg/0) (mg/0) (mg/0) (m) (m³/s) な で (°C) (°C) (ms/m) (mg/0) (mg/0) (m) (m³/s) な な こ                                                                                                                                                                                                                      | $7.2$ $16.2$ $10.1$ $0.4$ $0.7$ $  54$ $264$ $1.9$ $\beta$ ms $4.32$ $\overrightarrow{m} $ $14.2$ $>50$ $<0.05$ $7.4$ $15.3$ $11.9$ $1.1$ $4.9$ $         -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7. 9<br>18. 3<br>11. 3<br>0. 7<br>3. 2<br>-<br>-<br>-<br>38<br>388<br>1. 3<br>os<br>2. 76<br>時れ<br>9. 8<br>13. 6<br>>50<br><0. 05<br>7. 5<br>20. 0<br>10. 8<br>0. 7<br>2. 2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 8.3<br>19.2<br>12.3<br>0.7<br>0.8<br>-<br>-<br>-<br>-<br>-<br>37<br>812<br>1.4<br>os<br>1.31<br>mith<br>7.1<br>10.8<br>>50<br><0.05<br>8.0<br>20.6<br>12.1<br>0.6<br>1.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 8.1<br>19.2<br>13.1<br>0.6<br>5.7<br>0.2<br>0.7<br>17.9<br>2.29<br>29<br>203<br>1.4<br>os<br>2.25<br>時れ<br>11.5<br>12.8<br>>50<br><0.05<br>8.1<br>14.7<br>11.1<br>1.2<br>4.6<br>0.1<br>0.4<br>15.6<br>0.1<br>0.4<br>15.6<br>0.1<br>0.4<br>15.6<br>0.1<br>0.4<br>15.6<br>0.1<br>0.4<br>0.5<br>0.1<br>0.4<br>0.5<br>0.1<br>0.4<br>0.5<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | 7. 0 37. 5 6. 6 4. 8 6. 6 0. 2 1. 1 5. 2 0. 99 11 1, 521 3. 3 α ms 2. 47 iii 18. 9 >50 <0. 05 6. 9 42. 1 6. 8 2. 8 1. 9 0. 1 0. 6 3. 7 1. 06 17 1, 024                                                                                                 | $\begin{array}{c} 7.\ 7 \\ 23.\ 8 \\ 9.\ 9 \\ 1.\ 5 \\ 2.\ 8 \\ 0.\ 3 \\ 0.\ 7 \\ 8.\ 2 \\ 2.\ 42 \\ \hline 31 \\ 237 \\ 1.\ 9 \\ \beta\mathrm{ms} \\ 2.\ 69 \\ \hline \mathbf{m} \\ 17.\ 3 \\ 50 \\ <0.\ 05 \\ 7.\ 2 \\ 29.\ 9 \\ 7.\ 4 \\ 3.\ 5 \\ 4.\ 7 \\ 0.\ 3 \\ 0.\ 5 \\ 7.\ 5 \\ 2.\ 23 \\ \hline 27 \\ 105 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>&lt;0.05</li> <li>7.7</li> <li>26.8</li> <li>10.7</li> <li>0.9</li> <li>4.1</li> <li>-</li> <li>-</li> <li>35</li> <li>392</li> <li>1.5</li> <li>0</li> <li>2.25</li> <li>時れ</li> <li>17.2</li> <li>16.7</li> <li>&gt;50</li> <li>&lt;0.05</li> <li>7.7</li> <li>29.8</li> <li>9.0</li> <li>1.9</li> <li>8.1</li> <li>-</li> <li>-<!--</td--></li></ul>                                          |

には 30cm 角コドラード付きサーバーネット(採集面積  $0.09m^2$ ) を用い 1 地点あたり 3 回実施したが、3 回分の採集物を合わせて 1 試料としたため、採集面積 0.27

m<sup>2</sup>あたりの個体数として表示した。また、各出現種の 水質汚濁階級については、東京都環境局が実施した水 生生物調査<sup>4)</sup>及び森下<sup>5)</sup>に従った。

St. e を除いた各地点における総種類数 (4 回調査で出現した種類の合計数) は St. a:101 種類、St. b:79 種類、St. c:69 種類、St. d:61 種類、St. f:53 種類、St. i:60 種類という結果で、総種類数は St. a が最も多く St. f が最も少なかった。また、総種類数は、下流へ行くに従って減少する傾向が見られた。

St. e を除いた各地点における4回調査の平均個体数 (**図2**の〇印) は St. a:1,057 個体/0.27m²、St. b:865 個体/0.27m²、St. c:931 個体/0.27m²、St. d:599 個体/0.27m²、St. f:146 個体/0.27m²、St. i:306 個体/0.27m²という結果で、個体数についても St. a が最も多く St. f が最も少なかった。また、総種類数と同様に、個体数も下流へ行くに従って減少する傾向が見られた。

水量のほぼ100%が処理水で占められているSt.eでの総種類数は33種類で、4回調査の平均個体数は1,263個体/0.27m<sup>2</sup>であった。St.e とその他の地点と比較した結果、総種類数は少ないが個体数は多く、ミズムシやユスリカ科等の一部の種類が大量に生息する特徴が見られた。

# (3) 各地点における優占種

定量採集時に採集された底生動物のうち、個体数の多い上位3種類を表3に示す。処理水が流入する前のSt.aからSt.dまでは水質汚濁階級がos(貧腐水性:きれいな水)に該当する種が多く、特にシロハラコカゲロウ等のコカゲロウ科の出現率が高かった。また、処理水が流入した後のSt.fでは $\alpha$ ms( $\alpha$ 中腐水性:汚れた水)に該当する種が多く、ミズムシやミズミミズ科の出現率が高かった。同じく処理水が流入した後のSt.iでは調査時期により傾向が異なり、10月では $\alpha$ msに該

表3 各地点における優占種(上位3種)

|      |         | St. a       | St.b          | St. c           | St. d          | St. e     | St. f       | St. i           |
|------|---------|-------------|---------------|-----------------|----------------|-----------|-------------|-----------------|
|      | 第1優占種   | アカマタ゛ラカケ゛ロウ | フタハ゛コカケ゛ロウ    | Hコカケ゛ロウ         | Dコカケ゛ロウ        | ミス゛ムシ     | ミス゛ムシ       | ミシ゛カオフタハ゛コカケ゛ロウ |
|      | 出現率 (%) | 15. 2       | 24.4          | 24. 4           | 13.6           | 53. 4     | 16. 3       | 32.7            |
| 8月   | 第2優占種   | ミス゛ムシ       | シロハラコカケ゛ロウ    | ミシ゛カオフタハ゛コカケ゛ロウ | ハモンユスリカ属       | エリユスリカ亜科  | 汉、汉、科       | ウス゛ムシ綱          |
| ОЛ   | 出現率 (%) | 14. 7       | 18.0          | 16. 4           | 13.6           | 33. 1     | 14. 3       | 26.5            |
|      | 第3優占種   |             | ヒケ゛ナカ゛カワトヒ゛ケラ | サホコカケ゛ロウ        | サホコカケ゛ロウ       | ハモンユスリカ属  | サホコカケ゛ロウ    | フタハ゛コカケ゛ロウ      |
|      | 出現率 (%) |             | 13.5          | 14.0            | 8. 5           | 3.0       | 13.3        | 9. 2            |
|      |         | シロハラコカケ゛ロウ  | ウルマーシマトヒ゛ケラ   | Dコカケ゛ロウ         | Dコカケ゛ロウ        | セホ゛リュスリカ属 | エリユスリカ亜科    | ミズミミズ科          |
|      | 出現率 (%) | 30. 2       | 19.5          | 36. 1           | 36.0           | 29. 1     | 17.8        | 49. 2           |
| 10日  |         | シマイシヒ゛ル     | シロハラコカケ゛ロウ    | シロハラコカケ゛ロウ      | シロハラコカケ゛ロウ     | ミス゛ムシ     | ミス゛ムシ       | Dコカケ゛ロウ         |
| 10/7 | 出現率 (%) | 9.3         | 13. 4         | 13.3            | 10.8           | 17.5      | 11. 1       | 5. 5            |
|      | 第3優占種   | ヨシノコカケ゛ロウ   | トヒ゛イロコカケ゛ロウ   | サホコカケ゛ロウ        | ヒケ゛ナカ゛カワトヒ゛ケラ  | ユスリカ属     | ナガレユスリカ属    | フタハ゛コカケ゛ロウ      |
|      | 出現率 (%) | 7.0         | 9.9           | 10.0            | 9.0            | 13.7      | 8.9         | 4. 9            |
|      | 第1優占種   | ミス゛ムシ       | エリユスリカ亜科      | エリユスリカ亜科        | エリユスリカ亜科       | セホ゛リユスリカ属 | エリユスリカ亜科    | シロハラコカケ゛ロウ      |
|      | 出現率(%)  | 17.8        | 41.0          | 77.7            | 37.4           | 26. 7     | 35. 0       | 43.6            |
| 1月   | 第2優占種   | コカクツツトビケラ属  |               | シロハラコカケ゛ロウ      | フロリタ゛マミス゛ヨコエヒ゛ |           | 汉、汉、科       | エリユスリカ亜科        |
| 1/1  | 出現率 (%) | 14. 4       | 22.7          | 8.6             | 26. 1          | 22.2      | 26. 2       | 28.6            |
|      | 第3優占種   | オナシカワケ゛ラ属   | 汉"汉"科         | フタハ゛コカケ゛ロウ      | シロハラコカケ゛ロウ     | 小ミミズ科     | シロハラコカケ゛ロウ  | 汉、汉、科           |
|      | 出現率(%)  | 8.3         | 11.6          | 2.6             | 24.6           | 16.6      | 11.4        | 11.2            |
|      | 第1優占種   | エリユスリカ亜科    | エリユスリカ亜科      | 汉、汉、科           | 汉、汉、科          | エリユスリカ亜科  | エリユスリカ亜科    | エリユスリカ亜科        |
|      | 出現率(%)  | 55. 9       | 22.4          | 44.9            | 53. 7          | 70.7      | 54. 3       | 75. 2           |
| 3月   | 第2優占種   | ヨシノコカケ゛ロウ   | シロハラコカケ゛ロウ    | エリユスリカ亜科        | エリユスリカ亜科       | ミス゛ムシ     | 汉"汉"科       | ダニ目             |
| 0/1  | 出現率(%)  | 5.4         | 22.4          | 28.0            | 30.4           | 7.0       | 4.8         | 13.3            |
|      |         | シロハラコカケ゛ロウ  | 汉"汉"科         | フタハ゛コカケ゛ロウ      | シロハラコカケ゛ロウ     |           | ウルマーシマトヒ゛ケラ |                 |
|      | 出現率(%)  | 4.3         | 20. 1         | 12.0            | 3. 2           |           | 4.8         |                 |

当するミズミミズ科の出現率が高かったが、1 月では os に該当するシロハラコカゲロウの出現率が高かった。一方、水量のほぼ 100%が処理水で占められている St. e では a ms に加えて ps (強腐水性:大変汚れた水) に該当する種の出現率が高く、ミズムシやユスリカ科、イトミミズ科の出現率が高かった。

# (4) 汚濁指数及び多様性指数

Pantle-Buck の算定式を用いた汚濁指数及び Shannon-Weaverの算定式を用いた多様性指数の算定結果を表2に示す。また、St. a から St. i までの区間における汚濁指数及び多様性指数の縦断変化を図3に示す。なお、St. e は前述した理由により、浅川における汚濁指数及び多様性指数の変化を示す図3の折れ線グラフ上には表示しなかった。また、各出現種の水質汚濁指数については、東京都環境局が実施した水生生物調査4)及び森下5)に従った。

St. e を除いた各地点の汚濁指数及び多様性指数を 算定した結果、4回調査の平均汚濁指数(図3の●印)はSt. b が最も低く、4回調査の平均多様性指数(図3 の○印)はSt. a が最も高かった。処理水が流入する地 点前後(St. d と St. f)の汚濁指数及び多様性指数を比 較した結果、汚濁指数は処理水流入後もほとんど変化 がなかったが、多様性指数は処理水流入後に増加した。 なお、水量のほぼ100%が処理水で占められている St. e では、その他の地点を比較して汚濁指数は高く、多様 性指数は低かった。

## 4 おわりに

処理水が流入する地点前後における底生動物の生息 実態を調査した結果、採集された総種類数及び個体数 は処理水流入後の方が少なく、特に流入直後の St.f では個体数の減少が著しかった。また、St.f では水質 汚濁階級の ams に該当する種の出現率が高かったが、 os に該当する種の出現率は極めて低かった。一方、 St.f より下流に位置する St.i では、時期によっては os に該当する種の出現率が高くなった。以上のことか ら、処理水が流入した直後では底生動物の生息に対し て処理水は少なからず影響を与えていると考えられる が、流下に伴ってその影響は減少していると推測され た。

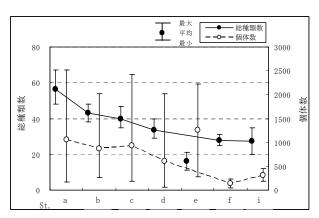



図2 総種類数及び個体数

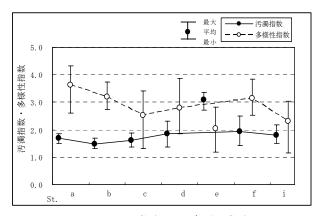



図3 汚濁指数及び多様性指数

## 参考文献

- 1)田中宏明ら:水生生態系から見た河川水質の評価 に関する研究、平成15年度下水道関係調査研究年次報 告書集、pp315-322(2005)
- 2) 生態系との共生をはかる下水道のあり方検討会編:生態系にやさしい下水道をめざして、技報堂出版(2001)
- 3) 東京都環境保全局:水質汚濁関係通達·疑義回答集、pp271-278、東京都環境保全局水質保全部水質規制課(1991)
- 4) 東京都環境局: 平成 13 年度水生生物調査結果報告書、東京都環境局環境評価部広域監視課(2003)
- 5)森下郁子:指標生物学 生物モニタリングの考え方、 山海堂(1985)

# 表4-1 出現した底生動物 (2006年8月)

調査日 : 2006年8月15日~16日 採集面積: 0.27m<sup>2</sup>

|                                                    |               |                 |                                      |                                                      | _                                 |                       |           |           | 採集血      | 槓:0.2    | 責:0.27m <sup>2</sup> |         |                                                  |
|----------------------------------------------------|---------------|-----------------|--------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------|-----------|-----------|----------|----------|----------------------|---------|--------------------------------------------------|
| No.                                                | 綱             | 目               | 科                                    | 学名                                                   | 和名                                | 水質汚<br>濁階級            | St. a     | St. b     | St. c    | St. d    | St. e                | St. f   | St. i                                            |
| 1                                                  | ウス゛ムシ         | ー<br>エ /マニル* /  |                                      | Turbellaria                                          | ウス、ムシ綱                            |                       | 6         | 4         | 1        | 4        |                      | 2       | 52                                               |
| 3                                                  | マキカ゛イ         | モノアラカ゛イ         | モノアラカ゛イ                              | Austropeplea ollula<br>Fossaria truncatula           | ヒメモノアラカ゛イ<br>コシタ゛カヒメモノアラカ゛イ       | αm                    |           | 0         | 0        |          |                      |         |                                                  |
| 4<br>5                                             |               |                 | 11.4 2.4. * /                        | Radix auricularia japonica                           | モノアラカ゛イ                           | lpha m                | 3         |           |          |          |                      |         |                                                  |
| 6                                                  |               |                 | サカマキカ゛イ<br>ヒラマキカ゛イ                   | <i>Physa acuta</i><br><i>Gyraulus</i> sp.            | サカマキガイ<br>Gvraulus属               | ps                    | 95        | 0         | 0        |          |                      |         |                                                  |
| 7                                                  | ニマイカ゛イ        | ハマク゛リ           | マメシシ゛ミ                               | Pisidiidae                                           | マメシシ゛ミ科                           |                       | 32        |           |          |          |                      |         |                                                  |
| 8                                                  | ₹₹ <b>ス</b> * | オヨキ゛ミミス゛        | オヨキ゛ミミス゛                             | Lumbriculidae                                        | オヨギミミズ科                           | os                    | 1         | 2         |          |          |                      |         | <b></b>                                          |
| 9                                                  |               | ナカ゛ミミス゛         | ヒメミミス゛<br>ツリミミス゛                     | Enchytraeidae<br>Lumbricidae                         | とメミミス゛科<br>ツリミミス゛科                | αm                    | 1 2       | 1         |          |          |                      | 1       | 1                                                |
| 11                                                 |               |                 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Naididae                                             | ミズミミズ科                            | αm                    | 0         | 0         | 5        |          |                      | 28      |                                                  |
| 12                                                 |               | d. 15. ° 5      | <b>イトミミス</b> ゛                       | Tubificidae                                          | イトミミズ科                            | ps                    | 0         |           |          |          |                      |         |                                                  |
| 13<br>14                                           | E/V           | ウオヒ゛ル<br>ヒル     | ク゛ロシフォニ<br>イシヒ゛ル                     | Helobdella stagnalis<br>Erpobdella lineata           | ヌマヒ゛ル<br>シマイシヒ゛ル                  | $\alpha$ m $\alpha$ m | 41        | 9         | 0        |          | 0                    | 0       | 3                                                |
| 15                                                 |               | L)V             | 126 1/2                              | Erpobdellidae                                        | イシビル科                             | αm                    | 1         | 2         |          | 0        | 19                   | ŏ       |                                                  |
| 16                                                 | クモ            | タ゛ニ             | _                                    | Acarina                                              | ダニ目                               | os                    | 100       | 4         | 5        | 3        |                      | 0.0     | 1                                                |
| 17                                                 | 甲殼            | ワラシ゛ムシ<br>ヨコエヒ゛ | ミス゛ムシ<br>マミス゛ヨコエヒ゛                   | Asellus hilgendorfi hilgendorfi Crangonyx floridanus | ミス゛ムシ<br>フロリタ゛マミス゛ヨコエヒ゛           | αm                    | 188       | 6         | 1<br>5   | 1        | 1, 187               | 32<br>7 | 1                                                |
| 19                                                 |               | 1226            | ハマトヒ、ムシ                              | Talitridae                                           | /r/t 4沙科                          | αm                    | ŏ         |           | 0        | 1        | 1                    | ,       |                                                  |
| 20                                                 |               | IĽ.             | ヌマエヒ゛                                | Neocaridina denticulata                              | ミナミヌマエヒ゛                          | $\alpha$ m            |           |           | 0        | 0        | 0                    |         | 0                                                |
| 21                                                 |               |                 | アメリカサ゛リカ゛ニ                           | Paratya improvisa<br>Procambarus clarkii             | ヌカエヒ゛<br>アメリカサ゛リカ゛ニ               | βm                    |           |           | 0        |          |                      |         | 0                                                |
| 22<br>23                                           | 昆虫            | カケ゛ロウ           | ヒメシロカケ゛ロウ                            | Caenis sp.                                           | ヒメシロカケ゛ロウ属                        | $\alpha$ m $\beta$ m  |           |           | 0        |          |                      | 0       | 1                                                |
| 24                                                 | 2027          | .,,,,           | マタ゛ラカケ゛ロウ                            | Ephemerella setigera                                 | クシケ゛マタ゛ラカケ゛ロウ                     | os                    | 119       |           | 0        |          |                      |         |                                                  |
| 25                                                 |               |                 |                                      | Torleya japonica                                     | エラフ゛タマタ゛ラカケ゛ロウ                    | os                    | 1         | 0         |          |          |                      |         |                                                  |
| 26<br>27                                           |               |                 | コカケ゛ロウ                               | Uracanthella rufa<br>Acentrella gnom                 | アカマタ゛ラカケ゛ロウ<br>ミツオミシ゛カオフタハ゛コカケ゛ロウ | βm                    | 194       | 2         | 17       | 1        |                      | 2<br>10 | 1<br>17                                          |
| 27<br>28<br>29                                     |               |                 | 2,1/1 11/1                           | Acentrella sibirica                                  | ミシ゛カオフタハ゛コカケ゛ロウ                   |                       | 1         | 8         | 49       | 1        |                      | 8       | 64                                               |
| 29                                                 |               |                 |                                      | Baetiella japonica                                   | フタハ゛コカケ゛ロウ                        | os                    | 1         | 194       | 1        |          |                      | 0       | 18                                               |
| 30<br>31                                           |               |                 |                                      | Baetis chocoratus                                    | トヒ゛イロコカケ゛ロウ<br>サホコカケ゛ロウ           | os                    | 114       | 29        | 40       | -        | 1                    | 9.6     | 9                                                |
| 32                                                 |               |                 |                                      | Baetis sahoensis<br>Baetis thermicus                 | サルコルク ロリ<br>シロハラコ <b>カ</b> ケ゛ロウ   | αm<br>os              | 114<br>74 | 10<br>143 | 42<br>24 | 5<br>1   | 1                    | 26      | 9                                                |
| 33<br>34                                           |               |                 |                                      | Baetis yoshinensis                                   | ヨシノコカケ゛ロウ                         | os                    | 1.1       | 140       | 21       |          |                      | 22      |                                                  |
| 34                                                 |               |                 |                                      | <i>Baetis</i> sp.D                                   | Dコカケ゛ロウ                           |                       | 1         |           | 24       | 8        |                      | 6       |                                                  |
| 35<br>36                                           |               |                 |                                      | Baetis sp.G                                          | Gコカケ゛ロウ<br>Hコカケ゛ロウ                |                       | 0         | 93        | 73       | 4        |                      | 20      | 2                                                |
| 37                                                 |               |                 |                                      | Baetis sp.H<br>Cloeon sp.                            | フタハ゛カケ゛ロウ属                        | β m                   | 1         | 93        | 13       | 4        | 0                    | 20      |                                                  |
| 38                                                 |               |                 |                                      | Procloeon sp.                                        | ヒメウスハ゛コカケ゛ロウ属                     | p iii                 | 0         |           |          |          | Ŭ                    |         |                                                  |
| 39                                                 |               |                 | チラカケ゛ロウ                              | Isonychia japonica                                   | チラカケ゛ロウ                           | os                    | 0         |           |          |          |                      |         | <b> </b>                                         |
| 40                                                 |               |                 | ヒラタカケ゛ロウ                             | Ecdyonurus kibunensis<br>Ecdyonurus yoshidae         | キフ゛ネタニカ゛ワカケ゛ロウ<br>シロタニカ゛ワカケ゛ロウ    | os<br>os              | 21        | 15        | 0        | 0        |                      | 0       | 1                                                |
| 42                                                 |               |                 |                                      | Epeorus latifolium                                   | エルモンヒラタカケ゛ロウ                      | os                    | 81        | 10        |          | ŏ        |                      |         | 1                                                |
| 43                                                 |               |                 |                                      | Epeorus uenoi                                        | ウエノヒラタカケ゛ロウ                       | os                    |           | 1         |          |          |                      |         |                                                  |
| 44                                                 |               | トンホ゛            | サナエトンホ゛                              | Davidius sp.                                         | ダビドサナエ属                           | 0                     | 2         |           | 0        | 0        |                      | 0       |                                                  |
| 45<br>46                                           |               |                 |                                      | Onychogomphus viridicosta<br>Sieboldius albardae     | オナカ゛サナエ<br>コオニヤンマ                 | βm<br>βm              | 11        | 0         | 0        | 0        |                      | 0       | 0                                                |
| 47                                                 |               |                 | トンホ゛                                 | Sympetrum sp.                                        | アカネ属                              | p iii                 | ŏ         |           |          |          |                      |         |                                                  |
| 48                                                 |               | カワケ゛ラ           | オナシカワケ゛ラ                             | Amphinemura sp.                                      | フサオナシカワケ゛ラ属                       | os                    | 0         |           |          |          |                      |         | <b></b>                                          |
| 49<br>50                                           |               |                 | カワケ゛ラ                                | Nemoura sp.<br>Ovamia sp.                            | オナシカワケ゛ラ属<br>オオヤマカワケ゛ラ属           | os<br>os              | 17        |           |          | 0        |                      |         | <del>                                     </del> |
| 51                                                 |               | カメムシ            | アメンボ                                 | Aquarius paludum paludum                             | アメンボ                              | αm                    | 1         |           | 0        |          |                      | 0       |                                                  |
| 52                                                 |               |                 |                                      | Metrocoris histrio                                   | シマアメンボ                            | $\beta$ m             |           |           | Ŭ        | 0        |                      | Ŭ       |                                                  |
| 53                                                 |               | 1 1. 5 1. 5     | 31 3. ° 1. ~                         | Gerridae                                             | アメンボー科                            | 0                     | 4         | 0         | 0        | 0        | 1                    |         | 1                                                |
| 54<br>55                                           |               | トヒ゛ケラ           | シマトヒ゛ケラ                              | Cheumatopsyche brevilineata Hydropsyche orientalis   | コカ゛タシマトヒ゛ケラ<br>ウルマーシマトヒ゛ケラ        | βm<br>os              | 49        | 101       | 2<br>14  | 2        | 1                    | 0       | 1                                                |
| 56                                                 |               |                 |                                      | Hydropsyche setensis                                 | ナカハラシマトヒ゛ケラ                       | os                    | 1         | 101       | 1.1      |          |                      |         |                                                  |
| 57                                                 |               |                 | イワトヒ゛ケラ                              | Plectrocnemia sp.                                    | ミヤマイワトビケラ属                        | os                    | 0         |           |          |          |                      |         |                                                  |
| 58<br>59                                           |               | I               | ヒゲナガカワトビケラ<br>ヤマトビケラ                 | Stenopsyche marmorata Glossosoma sp.                 | とケ゛ナカ゛カワトヒ゛ケラ                     | os                    | 175       | 107       | 0        | 1        | -                    | 1       |                                                  |
| 60                                                 |               |                 | ヒメトヒ・ケラ                              | <i>Hydroptila</i> sp.                                | ヤマトヒ゛ケラ属<br>ヒメトヒ゛ケラ属              | os                    | 1         | 0         |          |          |                      |         |                                                  |
| 61                                                 |               |                 | ナカ゛レトヒ゛ケラ                            | Rhyacophila nigrocephala                             | ムナク゛ロナカ゛レトヒ゛ケラ                    | os                    | 9         | 1         |          |          |                      |         |                                                  |
| 62                                                 |               |                 | -1.29 21.91-                         | Rhyacophila yamanakensis                             | ヤマナカナカ゛レトヒ゛ケラ                     | os                    | 1         | 5         |          |          |                      |         | <u> </u>                                         |
| 63<br>64                                           |               | I               | ニンキ゛ョウトヒ゛ケラ<br>カクツツトヒ゛ケラ             | Goera japonica<br>Goerodes sp.                       | ニンキ゛ョウトヒ゛ケラ<br>コカクツツトヒ゛ケラ属        | os                    | 0         | 1         |          | 1        | <del> </del>         |         | <b>-</b>                                         |
| 65                                                 |               | <u> </u>        | ケトヒ゛ケラ                               | Gumaga okinawaensis                                  | グマガトビケラ                           | os                    | 1         |           |          |          |                      |         |                                                  |
| 66                                                 |               | ハエ              | カ゛カ゛ンホ゛                              | <i>Antocha</i> sp.                                   | ウスバヒメガガンボ属                        | os                    | 17        | 5         | 1        |          |                      |         | 1                                                |
| 67<br>68                                           |               |                 | 4-A. * -                             | Tipula sp.                                           | キリウシ゛カ゛カ゛ンホ゛属<br>Psvchoda属        | βm                    |           | l         | 0        | 0        |                      |         | -                                                |
| 69                                                 |               |                 | チョウハ゛エ                               | <i>Psychoda</i> sp. <i>Telmatoscopus</i> sp.         | Psychoda属<br>Telmatoscopus属       | ps<br>ps              |           |           |          | 1        |                      | 2       |                                                  |
| 70                                                 |               | I               | ユスリカ                                 | Chironomus sp.                                       | ユスリカ属                             | ps                    |           |           |          | 1        | 1                    |         |                                                  |
| 71                                                 |               |                 |                                      | Glyptotendipes sp.                                   | セホ゛リュスリカ属                         |                       |           |           |          |          | 47                   |         | ļ                                                |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80 |               |                 |                                      | <i>Micropsectra</i> sp. <i>Microtendipes</i> sp.     | ナカ゛スネユスリカ属<br>ツヤムネユスリカ属           | α m<br>α m            |           | 0         |          | 2        |                      |         | <b> </b>                                         |
| 74                                                 |               | I               |                                      | <i>Microtenalpes</i> sp. <i>Polypedilum</i> sp.      | ハモンユスリカ属                          | αm                    |           |           | 13       | 8        | 67                   |         | 16                                               |
| 75                                                 |               | I               |                                      | Tanytarsus sp.                                       | ヒケ、ユスリカ属                          | ***                   | 0         |           | 1        |          |                      |         |                                                  |
| 76                                                 |               |                 |                                      | Pentaneurini                                         | ヤマトヒメユスリカ族                        |                       | 00        |           | 9        | 2        | 2.4                  | 16      | 1                                                |
| 77                                                 |               |                 |                                      | Tanytarsini<br>Chironominae                          | ヒゲコスリカ族<br>コスリカ亜科                 | ps                    | 0         | 1         | 2        | -        | 64                   | 1       | <b>-</b>                                         |
| 79                                                 |               | I               |                                      | Orthocladiinae                                       | エリユスリカ亜科                          | ps:                   | 0         | 12        | 0        | 4        | 736                  | 6       | 1                                                |
| 80                                                 |               | I               |                                      | Chironomidae pupa                                    | ユスリカ科 蛹                           |                       | 1         | 32        | 8        | 6        | 98                   | 6       |                                                  |
| 81                                                 |               |                 | ブユ                                   | Simulium sp.                                         | アシマタ゛ラフ゛ュ属                        | os                    | 1         | 3         | 1        | <u> </u> |                      |         |                                                  |
| 82<br>83                                           |               | コウチュウ           | アシナカ゛ハ゛エ<br>ケ゛ンコ゛ロウ                  | Dolichopodidae<br>Colymbetinae                       | アシナカ゛ハ゛ェ科<br>ヒメケ゛ソコ゛ロウ亜科          |                       |           | 1         |          | 4        | 0                    |         |                                                  |
| 84                                                 |               | -7/147          | ヒメト・ロムシ                              | Elminae                                              | ヒメト、ロムシ亜科                         |                       |           | 4         |          | 1        |                      |         |                                                  |
| 85                                                 |               | <u> </u>        | ヒラタト゛ロムシ                             | <i>Eubrianax</i> sp.                                 | マルヒラタト゛ロムシ属                       | $\beta$ m             |           |           | 1        |          |                      |         | 5                                                |
| 注)                                                 | OFILT:        | マ州坂伸で           | 出現した種                                | た 示す                                                 | -                                 |                       |           |           |          |          |                      |         |                                                  |

表 4-2 出現した底生動物 (2006年10月)

調査日 : 2006年10月17日~18日

|                                        |              |                 |                             |                                                         |                                             |                                                  |               | 採集面積: 0.27m <sup>2</sup> |          |          |          |              |                                                  |
|----------------------------------------|--------------|-----------------|-----------------------------|---------------------------------------------------------|---------------------------------------------|--------------------------------------------------|---------------|--------------------------|----------|----------|----------|--------------|--------------------------------------------------|
| No.                                    | 綱            | 目               | 科                           | 学名                                                      | 和名                                          | 水質汚<br>濁階級                                       | St. a         | St.b                     | St. c    | St. d    | St. e    | St. f        | St. i                                            |
| 1                                      | ウス゛ムシ        | _               | -                           | Turbellaria                                             | ウス゛ムシ綱                                      |                                                  | 6             | 0                        |          | 2        |          | 3            | 4                                                |
| 3                                      | マキカ゛イ        | ニナ              | カワニナ<br>ミス゛ツホ゛              | Semisulcospira libertina<br>Potamopyrgus jenkinsi       | カワニナ<br>コモチカワツホ゛                            | os                                               | 0             |                          |          |          |          |              | 1                                                |
| 4                                      | マキカ゛イ        | モノアラカ゛イ         | サカマキカ゛イ                     | Physa acuta                                             | サカマキカ゛イ                                     | ps                                               | 0             | 8                        |          |          | 0        |              | 1                                                |
| 5                                      | <u> </u>     | 2////           | ヒラマキカ゛イ                     | Gyraulus sp.                                            | Gyraulus属                                   | Po                                               | 2             |                          |          |          |          |              |                                                  |
| 6                                      | ニマイカ゛イ       | ハマク゛リ           | マメシシ゛ミ                      | Pisidiidae                                              | マメシシ゛ミ科                                     |                                                  | 0             |                          |          |          |          |              |                                                  |
| 7                                      | ミミス゛         | <b>オヨキ゛ミミス゛</b> | オヨキ゛ミ ミズ                    | Lumbriculidae                                           | オヨギミミズ科                                     | os                                               | 0             |                          |          |          |          |              |                                                  |
| 8                                      |              | ナカ゛ミミス゛         | ツリミミス゛<br>ミス゛ミミス゛           | Lumbricidae                                             | ツリミミス 科                                     | αm                                               | 2             | 1                        | 0        |          | 1        | 0            | 90                                               |
| 9                                      | ł            |                 | :^ :;^<br>小:ミズ              | Naididae<br>Tubificidae                                 | <u>いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい</u> | αm<br>ps                                         | 2             |                          |          | 0        | 12       | 2            | 90                                               |
| 11                                     | Ł <i>I</i> V | Ł <i>I</i> V    | イシヒ゛ル                       | Erpobdella lineata                                      | シマイシヒ゛ル                                     | αm                                               | 16            | 0                        | 1        | 0        | 0        | 1            | 3                                                |
| 12                                     |              |                 | // - //                     | Erpobdellidae                                           | イシビル科                                       | αm                                               | 3             | Ŏ                        | 0        | Ŏ        | 3        |              | 3                                                |
| 13                                     |              | タ゛ニ             | _                           | Acarina                                                 | ダニ目                                         | os                                               | 2             | 9                        | 4        | 8        |          | 1            | 4                                                |
| 14                                     | 甲殼           | ワラシ゛ムシ          | ミス゛ムシ                       | Asellus hilgendorfi hilgendorfi<br>Crangonvx floridanus | ミス゛ムシ<br>フロリタ゛マミス゛ヨコエヒ゛                     | αm                                               | 2             | 0                        | 0        | 4        | 50       | 5<br>3       | -                                                |
| 15<br>16                               |              | ヨコエヒ゛<br>エヒ゛    | マミス゛ヨコエヒ゛<br>ヌマエヒ゛          | Neocaridina denticulata                                 | シュリケ マミス ココエロ<br>ミナミヌマエヒ゛                   | αm                                               |               | 8                        |          | 0        | $\cap$   | 0            | 0                                                |
| 17                                     |              | J- L            | 7170                        | Paratya improvisa                                       | ヌカエヒ゛                                       | βm                                               |               | 0                        | ŏ        |          |          | ŏ            | ŏ                                                |
| 18                                     |              |                 | アメリカサ゛リカ゛ニ                  | Procambarus clarkii                                     | アメリカサ゛リカ゛ニ                                  | αm                                               | 0             |                          | Ŭ        | 0        |          | Ŭ            |                                                  |
| 19                                     | 昆虫           | <i>ከ</i> ታ` ロウ  |                             | Ephemera strigata                                       | モンカケ゛ロウ                                     | os                                               | 0             | 0                        | 0        |          |          |              |                                                  |
| 20<br>21                               |              |                 | ヒメシロカケ゛ロウ                   | Caenis sp.                                              | ヒメシロカケ゛ロウ属                                  | $\beta$ m                                        |               |                          |          |          |          |              | 2                                                |
| 21                                     |              |                 | マタ゛ラカケ゛ロウ                   | Ephemerella setigera                                    | クシケ゛マタ゛ラカケ゛ロウ                               | os                                               | 2             | 7                        |          | 1        |          |              |                                                  |
| 22<br>23                               | ł            |                 |                             | Torleya japonica<br>Uracanthella rufa                   | エラフ゛タマタ゛ラカケ゛ロウ<br>アカマタ゛ラカケ゛ロウ               | os<br>βm                                         | 11            | $\frac{\circ}{2}$        | 1        | 11       | 1        | -            |                                                  |
| 24                                     | İ            | l               | コカケ゛ロウ                      | Acentrella gnom                                         | ミツオミシ゛カオフタハ゛コカケ゛ロウ                          | шц                                               | - 11          | - 4                      | 1        | 0        | 1        | l            | 8                                                |
| 25                                     | j            |                 | ., .,                       | Acentrella sibirica                                     | ミシ゛カオフタハ゛コカケ゛ロウ                             |                                                  |               | 4                        | 8        |          |          |              | 6                                                |
| 26                                     |              |                 |                             | Baetiella japonica                                      | フタハ゛コカケ゛ロウ                                  | os                                               |               | 8                        | 4        | 0        |          |              | 9                                                |
| 27                                     |              |                 |                             | Baetis chocoratus                                       | トヒ゛イロコカケ゛ロウ                                 | os                                               | 6             | 26                       | 12       | 0        |          | 1            |                                                  |
| 28<br>29                               |              |                 |                             | Baetis sahoensis                                        | サホコカケ゛ロウ<br>シロハラコカケ゛ロウ                      | αm                                               | 4             | 35                       | 18       | 9<br>12  |          | 3 2          | 7                                                |
| 30                                     | 1            |                 |                             | Baetis thermicus<br>Baetis yoshinensis                  | ヨシノコカケ゛ロウ                                   | os<br>os                                         | 52<br>12      | 35                       | 24       | 0        |          | 2            | 4                                                |
| 31                                     | 1            |                 |                             | Baetis yoshinensis                                      | Dコカケ゛ロウ                                     | 0.5                                              | 12            | 0                        | 65       | 40       |          |              | 10                                               |
| 32                                     |              |                 |                             | Baetis sp.E                                             | Eコカケ゛ロウ                                     |                                                  | 8             |                          |          | 0        |          | 2            |                                                  |
| 33                                     |              |                 |                             | Baetis sp.G                                             | Gコカケ゛ロウ                                     |                                                  | 0             | 0                        | 0        |          |          |              | 0                                                |
| 34                                     |              |                 |                             | Baetis sp.H                                             | Hコカケ゛ロウ                                     |                                                  |               | 20                       | 16       | 0        |          | 2            | 8                                                |
| 35                                     |              |                 | ヒラタカケ゛ロウ                    | Ecdyonurus kibunensis                                   | キフ゛ネタニカ゛ワカケ゛ロウ<br>シロタニカ゛ワカケ゛ロウ              | os                                               | 11            | 9                        | 6        | 0        |          |              | <b>.</b>                                         |
| 36<br>37                               | ł            |                 |                             | Ecdyonurus yoshidae<br>Epeorus latifolium               | エルモンヒラタカケ゛ロウ                                | os<br>os                                         | 5             | 19                       | 0        | 2<br>1   | -        |              | -                                                |
| 38                                     | 1            | トンホ゛            | カワトンホ゛                      | Calopteryx atrata                                       | ハク゛ロトンホ゛                                    | βm                                               | - 0           | 0                        | ŏ        | 1        |          | 0            | 0                                                |
| 39                                     | 1            | 10.4            | サナエトンホ゛                     | Davidius sp.                                            | ダビドサナエ属                                     | р                                                | 0             | Ŏ                        | Ŏ        | 0        |          | Ŭ            | Ŏ                                                |
| 40                                     |              |                 |                             | Onychogomphus viridicosta                               | オナカ゛サナエ                                     | $\beta$ m                                        | 0             | 0                        | 0        | 0        | 0        | 1            | 0                                                |
| 41                                     |              | 110 0           | 111111111                   | Sieboldius albardae                                     | コオニヤンマ                                      | $\beta$ m                                        | 0             |                          |          | 0        |          |              |                                                  |
| 42<br>43                               | ł            | カワケ゛ラ           | オナシカワケ゛ラ                    | Nemoura sp.                                             | オナシカワケ゛ラ属<br>フタツメカワケ゛ラ属                     | os                                               | 0             | 0                        | 1        | 0        |          |              | <b>.</b>                                         |
| 44                                     | ł            |                 | カワケ゛ラ                       | Neoperla sp.<br>Oyamia sp.                              | オオヤマカワケ゛ラ属                                  | os<br>os                                         | 0             |                          | 1        |          | -        |              |                                                  |
| 45                                     | 1            | カメムシ            | アメンホ゛                       | Aquarius paludum paludum                                | アメンボ                                        | αm                                               |               | $\circ$                  | 0        | 0        | $\cap$   |              | $\circ$                                          |
| 46                                     |              | //              | // * 4.                     | Metrocoris histrio                                      | シマアメンボ                                      | βm                                               |               |                          | Ŭ        | Ŏ        |          |              |                                                  |
| 47                                     |              |                 |                             | Gerridae                                                | アメンボ・科                                      |                                                  |               | 0                        |          |          |          |              |                                                  |
| 48                                     |              | トヒ゛ケラ           | シマトヒ゛ケラ                     | Cheumatopsyche brevilineata                             | コカ゛タシマトヒ゛ケラ                                 | $\beta$ m                                        |               | 0                        |          | 0_       | 0        | 1            |                                                  |
| 49<br>50                               | ł            |                 | 1.60.140.401.00.65          | Hydropsyche orientalis                                  | ウルマーシマトヒ゛ケラ                                 | os                                               | 7             | 51                       | 6        | 10       |          | 1            | -                                                |
| 51                                     | 1            |                 | ヒゲナガカワトビケラ<br>ヤマトビケラ        | Stenopsyche marmorata Glossosoma sp.                    | <u>ヒゲナガカワトビケラ</u><br>ヤマトビケラ属                | os<br>os                                         | 1             | 14                       | б        | 10       |          | 1            |                                                  |
| 52                                     |              |                 | ヒメトヒ゛ケラ                     | Hydroptila sp.                                          | txlt file                                   | 0.5                                              |               |                          | 0        |          |          |              |                                                  |
| 53                                     | j            | l               |                             | Rhyacophila brevicephala                                | ヒロアタマナカ゛レトヒ゛ケラ                              | os                                               | 2             | 0                        | <u> </u> |          |          |              |                                                  |
| 54                                     |              |                 |                             | Rhyacophila nigrocephala                                | ムナク゛ロナカ゛レトヒ゛ケラ                              | os                                               | 2             |                          |          |          |          |              |                                                  |
| 55                                     | l            |                 |                             | Rhyacophila transquilla                                 | トランスクィラナカ゛レトヒ゛ケラ                            | os                                               |               | 0                        |          | <b>!</b> |          |              | <u> </u>                                         |
| 56                                     | ł            |                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Goera japonica                                          | ニンキ゛ョウトヒ゛ケラ                                 | os                                               | 0             | 0                        |          | 1        | 1        |              |                                                  |
| 57<br>58                               | ł            | ハエ              | カクツツトヒ`ケラ<br>カ゛カ゛ンホ゛        | Goerodes sp. Antocha sp.                                | <u>コカクツツトヒーケフ属</u><br>ウスハ゛ヒメカ゛カ゛ンホ゛属        | os                                               | 2             | -                        | 1        | l        | 1        |              |                                                  |
| 59                                     | İ            | , <sub>(L</sub> | N N NN                      | <i>Tipula</i> sp.                                       | キリウシ゛カ゛カ゛ンホ゛属                               | βm                                               | - 4           | 0                        | 0        | l        | 1        |              | l                                                |
| 60                                     | 1            | l               | ユスリカ                        | Chironomus sp.                                          | ユスリカ属                                       | ps                                               |               | 1                        | L        | 1        | 39       |              |                                                  |
| 61                                     | ]            | l               | I                           | Glyptotendipes sp.                                      | セホ゛リユスリカ属                                   |                                                  |               |                          |          |          | 83       |              |                                                  |
| 62                                     | l            |                 |                             | <i>Micropsectra</i> sp.                                 | ナカ゛スネユスリカ属                                  | $\alpha$ m                                       | 0             |                          | 0        | 0.       |          |              |                                                  |
| 63                                     | ł            |                 |                             | Polypedilum sp.                                         | ハモンユスリカ属                                    | αm                                               | 1             | 12                       | 0        | 4        | 33       | 0            | 2                                                |
| 64<br>65                               | ł            |                 |                             | Rheotanytarsus sp. Tanytarsus sp.                       | ナカ゛レユスリカ属<br>ヒケ゛ユスリカ属                       | αm                                               | 0             | -                        | 4        | -        | l        | 4            | 0                                                |
| 66                                     | 1            |                 |                             | Pentaneurini                                            | ヤマトヒメユスリカ族                                  | <del>                                     </del> |               | 0                        | 1        | <b>-</b> |          | 4            | 1                                                |
| 67                                     | 1            | I               | I                           | Tanytarsini                                             | ヒケ゛ユスリカ族                                    | i e                                              |               | ŏ                        | 0        | i        | 0        | <u> </u>     | 2                                                |
| 68                                     | ]            | l               |                             | Chironominae                                            | ユスリカ亜科                                      | ps                                               |               | Ŏ                        |          | 0        | Ŏ        |              |                                                  |
| 69                                     | l            |                 |                             | Diamesinae                                              | ヤマユスリカ亜科                                    | os                                               |               |                          |          | 0.       | L        |              | 1                                                |
| 70                                     | ł            |                 |                             | Orthocladiinae                                          | エリユスリカ亜科<br>ユスリカ科 蛹                         | 1                                                | ļ             | 24                       | 4        | 4        | 28       | 8            | 8                                                |
| 71                                     | ł            |                 | ホソカ                         | Chironomidae pupa  Dixa sp.                             | コスリカ本社 畑 ポンカ 属                              | ps                                               | 0             | 1                        | 4        | 8        | 30       | <del> </del> | 8                                                |
| 73                                     | 1            |                 | <i>ホ/ル</i><br>ブ ユ           | Dixa sp.<br>Simulium sp.                                | アシマタ゛ラフ゛ュ属                                  | os<br>os                                         |               |                          | 0        | 4        | <b>-</b> | 0            | 2                                                |
| 74                                     | 1            | I               | アシナカ゛ハ゛ェ                    | Dolichopodidae                                          | アシナカ゛ハ゛エ科                                   | 0.0                                              |               |                          |          | 0        | 1        |              |                                                  |
| 75                                     | 1            |                 | オト゛リハ゛エ                     | Empididae                                               | オドリバエ科                                      |                                                  |               |                          |          |          | 1        |              |                                                  |
| 76                                     | 1            |                 | ミキ゛ワハ゛エ                     | Ephydridae                                              | ミギワバエ科                                      |                                                  |               |                          |          |          | 0        |              |                                                  |
| 72<br>73<br>74<br>75<br>76<br>77<br>78 |              | コウチュウ           | ケ゛ンコ゛ロウ                     | Platambus pictipennis                                   | モンキマメケ゛ンコ゛ロウ                                |                                                  | 0             |                          |          |          |          |              |                                                  |
| 78                                     | ł            |                 | ミス・スマシ                      | Orectochilus regimbarti regimbarti                      | オナカ゛ミス゛スマシ                                  | os                                               |               |                          |          | 0        | l        |              | ⊢—                                               |
| 79<br>80                               | ł            |                 | ヒラタト゛ロムシ                    | Ectopria sp. Eubrianax sp.                              | チビヒゲナガハナノミ属<br>マルヒラタドロムシ属                   | os<br>βm                                         | 2             | 0                        |          | 1        | 1        |              | <del>                                     </del> |
| 81                                     | i            | l               | ホタル                         | Luciola cruciata                                        | ケ、ンシ、ホ、タル                                   | βm                                               | 0             | 1                        | l        | l        | 1        | l            |                                                  |
| ~ 1                                    |              |                 | / /:                        | 01401404                                                | ., ,                                        |                                                  | $\overline{}$ |                          |          |          |          |              |                                                  |

|          |                       |                      |                                         |                                                          |                                               |            |         |          | 採集面       | 積:0.2                | 7 m <sup>2</sup>          |                 |            |
|----------|-----------------------|----------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------------------|------------|---------|----------|-----------|----------------------|---------------------------|-----------------|------------|
|          | 綱                     | 目                    | 科                                       | 学名                                                       | 和名                                            | 水質汚<br>濁階級 | St. a   | St.b     | St. c     | St. d                | St. e                     | St. f           | St.        |
|          | バング<br>マキカ・イ          | <br>=+               | カワニナ                                    | Turbellaria<br>Semisulcospira libertina                  | カワニナ                                          | os         | 2       | 1        | 2         |                      |                           | 2               |            |
| 7        | <u>'</u> キカ゛イ         | モノアラカ゛イ              | モノアラカ゛イ                                 | Austropeplea ollula                                      | ヒメモノアラカ゛イ                                     | αm         | 1       |          |           |                      |                           |                 |            |
|          |                       |                      | サカマキカ゛イ                                 | Physa acuta                                              | サカマキカ´イ                                       | ps         |         |          |           |                      | 0                         |                 |            |
| 1        | マイカ・イ                 | ハマク゛リ                | ヒラマキカ゛イ<br>マメシシ゛ミ                       | Gyraulus sp.                                             | Gyraulus属<br>マメシシ゛ミ科                          |            | 1       |          |           | -                    |                           |                 | -          |
|          | <u>- Y1ル 1</u><br>ミス゛ | ナカ゛ミミス゛              | ヒメミミズ                                   | Pisidiidae<br>Enchytraeidae                              | t x > 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x |            | $\cap$  |          |           |                      | 0                         | 1               |            |
|          |                       | /// \\\.             | ツリミミス゛                                  | Lumbricidae                                              | ツリミミズ・科                                       | αm         | 2       | 3        | 0         |                      | ŏ                         | 0               |            |
|          |                       |                      | ₹ <b>ス</b> * ₹₹ <b>ス</b> *              | Naididae                                                 | र्ज राज भ                                     | lpha m     |         | 45       | 20        | 1                    |                           | 62              |            |
| )        |                       |                      | イトミミズ                                   | Tubificidae                                              | <b>小ミス・科</b>                                  | ps         | 4       | 0        |           |                      | 253                       |                 |            |
| 1 t<br>2 | :N                    | ヒル                   | イシヒ゛ル                                   | Erpobdella lineata<br>Erpobdellidae                      | シマイシビル<br>イシビル科                               | αm         | 2<br>13 | 0        |           | -                    | 175                       | 2               |            |
| 3 /      | ' <del>+</del>        | タ゛ニ                  | <u> </u>                                | Acarina                                                  | ダニ目                                           | αm<br>os   | 13      | 8        | 0         | 3                    | 175                       | 1               |            |
| 4 F      | 甲殼                    | / ー<br>ワラシ゛ムシ        | ミス゛ムシ                                   | Asellus hilgendorfi hilgendorfi                          | ミス・ムシ                                         | αm         | 47      | 0        | ŏ         | Ů                    | 242                       | 1               |            |
| 5        | 1 /50                 | ヨコエヒ゛                | マミス゛ヨコエヒ゛                               | Crangonyx floridanus                                     | フロリタ゛マミス゛ヨコエヒ゛                                |            | 6       | 1        | 1         | 53                   |                           | 12              |            |
| 3        |                       | エヒ゛                  | ヌマエヒ゛                                   | Neocaridina denticulata                                  | ミナミヌマエヒ゛                                      | $\alpha$ m |         |          | 0         | 0                    |                           | 0               |            |
| 7        |                       |                      | コンリチボッリチャー                              | Paratya improvisa                                        | ヌカエヒ゛<br>アメリカサ゛リカ゛ニ                           | βm         | 8       |          |           | 0                    |                           |                 |            |
| 3        | 記虫                    | カケ゛ロウ                | アメリカサ゛リカ゛ニ<br>モンカケ゛ロウ                   | Procambarus clarkii<br>Ephemera strigata                 | ナメリカサーリカー<br>モンカケ゛ロウ                          | αm<br>os   | 5       |          |           | 0                    | $\vdash$                  |                 |            |
| ) 1      | 北瓜                    | N7 119               | ヒメシロカケ゛ロウ                               | Caenis sp.                                               | ヒメシロカケ゛ロウ属                                    | βm         | J       |          |           |                      |                           |                 |            |
| 1        |                       |                      | マタ゛ラカケ゛ロウ                               | Cincticostella okumai                                    | オオクママタ゛ラカケ゛ロウ                                 | os         | 2       |          |           |                      |                           |                 |            |
| 2        |                       |                      |                                         | Drunella basalis                                         | オオマタ゛ラカケ゛ロウ                                   | os         | 0       |          |           |                      |                           |                 |            |
| 3        |                       |                      |                                         | Drunella sp.                                             | トケ゛マタ゛ラカケ゛ロウ属                                 |            | 0       | 0        |           |                      |                           |                 |            |
| <u> </u> |                       |                      |                                         | Ephacerella longicaudata<br>Torleya japonica             | シリナカ゛マタ゛ラカケ゛ロウ<br>エラフ゛タマタ゛ラカケ゛ロウ              | os<br>os   | 4       | 1        | 0         | $\frac{\bigcirc}{2}$ | $\vdash$                  | 0               | -          |
| ;        |                       |                      |                                         | Uracanthella rufa                                        | アカマタ゛ラカケ゛ロウ                                   | βm         | 11      | 0        | $\circ$   | 3                    |                           | $\tilde{\circ}$ | (          |
| 1        |                       |                      | コカケ゛ロウ                                  | Baetiella japonica                                       | フタハ゛コカケ゛ロウ                                    | os         | 0       |          | 21        | Õ                    |                           | 1               |            |
| )        |                       |                      | .,,,,                                   | Baetis chocoratus                                        | トヒ゛イロコカケ゛ロウ                                   | os         |         | 16       |           |                      |                           |                 |            |
| )        |                       |                      |                                         | Baetis sahoensis                                         | サホコカケ゛ロウ                                      | lpha m     | 1       | 0_       | 0         |                      |                           |                 |            |
| )        |                       |                      |                                         | Baetis thermicus                                         | シロハラコカケ゛ロウ<br>ヨシノコカケ゛ロウ                       | os         | 16      | 88       | 70        | 50                   | $\vdash$                  | 27              | 1          |
| 2        |                       |                      |                                         | Baetis yoshinensis<br>Baetis sp.E                        | Eコカケ゛ロウ                                       | os         | 0       |          | 4         | 5                    | $\vdash$                  |                 |            |
|          |                       |                      |                                         | Baetis sp.H                                              | Hコカケ゛ロウ                                       |            |         |          | 0         |                      |                           |                 |            |
|          |                       |                      | チラカケ゛ロウ                                 | Isonychia japonica                                       | チラカケ゛ロウ                                       | os         | 2       |          |           | 0                    |                           |                 |            |
| 5        |                       |                      | ヒラタカケ゛ロウ                                | Ecdyonurus yoshidae                                      | シロタニカ゛ワカケ゛ロウ                                  | os         | 13      | 8        | 0         |                      |                           | 1               |            |
| 3        |                       |                      |                                         | Epeorus latifolium                                       | エルモンヒラタカケ゛ロウ                                  | os         | 1       | 8        | 4         | 0                    |                           | 10              |            |
| 5        |                       | トンホ゛                 | カワトンホ゛                                  | Rhithrogena sp.<br>Calopteryx cornelia                   | ヒメヒラタカケ゛ロウ属<br>ミヤマカワトンホ゛                      |            | 0       | 0        |           | -                    |                           |                 |            |
| 3        |                       | レンル                  | ヤンマ                                     | Boyeria maclachlani                                      | コシホ、ソヤンマ                                      | os<br>os   | 1       |          |           |                      |                           |                 | (          |
| )        |                       |                      | サナエトンホ゛                                 | Anisogomphus maacki                                      | ミヤマサナエ                                        | βm         |         |          |           |                      |                           | 0               |            |
| L        |                       |                      |                                         | Davidius sp.                                             | ダビドサナエ属                                       |            | 14      | 0        | 0         |                      |                           |                 |            |
| 2        |                       |                      |                                         | Onychogomphus viridicosta                                | オナカ゛サナエ                                       | βm         |         |          | 0         | 0                    |                           | 0               |            |
| 3        |                       |                      | وسر اول سام                             | Sieboldius albardae                                      | コオニヤンマ                                        | βm         | 2       | 0        | 0         |                      | $\vdash$                  |                 |            |
| 5        |                       |                      | オニヤンマエソ゛トンホ゛                            | Anotogaster sieboldii<br>Macromia amphigena amphigena    | オニヤンマ                                         | β m<br>α m |         |          |           |                      |                           |                 |            |
| 3        |                       | カワケ゛ラ                | オナシカワケ゛ラ                                | Amphinemura sp.                                          | フサオナシカワケ゛ラ属                                   | os         |         |          | 0         |                      |                           |                 |            |
| 7        |                       | ,,,,,                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Nemoura sp.                                              | オナシカワケ゛ラ属                                     | os         | 22      | 0        | )         | 0                    |                           |                 |            |
| }        |                       |                      |                                         | <i>Neoperla</i> sp.                                      | フタツメカワケ゛ラ属                                    | os         |         | 0        | 0         | 0                    |                           | 0               |            |
| )        |                       |                      | 7 ) ) b p )                             | <i>Oyamia</i> sp.                                        | オオヤマカワケ゛ラ属                                    | os         | 4       |          | 0         |                      |                           |                 |            |
| )        |                       | カメムシ                 | アミメカワケ゛ラ<br>ミス゛ムシ                       | Ostrovus sp. Micronecta sp.                              | <u> コク゛サミト゛リカワケ゛ラモト゛キ属</u><br>チビ ミズ ムシ 属      | os         | 0       | 2        |           | <b>.</b>             |                           |                 |            |
| 2        |                       | <i>カアメムン</i><br>トビケラ | シマトヒ゛ケラ                                 |                                                          | コカ゛タシマトト゛ ケラ                                  | βт         | 3       | 8        | 0         | 0                    | 0                         |                 |            |
|          |                       | 10 //                | 7110 //                                 | Hydropsyche orientalis                                   | ウルマーシマトヒ゛ケラ                                   | os         | O       | 14       | 2         | 5                    |                           | 4               |            |
|          |                       |                      |                                         | Hydropsyche setensis                                     | ナカハラシマトヒ゛ケラ                                   | os         | 0       |          |           |                      |                           |                 |            |
| 5        |                       |                      | ヒケ゛ナカ゛カワトヒ゛ケラ                           | Stenopsyche marmorata                                    | ヒケ゛ナカ゛カワトヒ゛ケラ                                 | os         | 3       | 12       | 1         | 0                    | igspace                   | 4               | L.         |
| <u>;</u> |                       |                      | ヒメトヒ゛ケラ                                 | <i>Hvdroptila</i> sp.<br><i>Rhyacophila brevicephala</i> | ヒメトヒ゛ケラ属                                      | 0.7        | 3       | 0        | 0         | 0                    | $\vdash$                  |                 | (          |
| 3        |                       |                      | ナカ゛レトヒ゛ケラ                               | Rhyacophila brevicephala<br>Rhyacophila nigrocephala     | ヒロアタマナカ゛レトヒ゛ケラ<br>ムナク゛ロナカ゛レトヒ゛ケラ              | os<br>os   |         |          |           | 1                    | $\vdash$                  | 0               | $\vdash$   |
| 1        |                       |                      |                                         | Rhyacophila transquilla                                  | トランスクィラナカ゛レトヒ゛ケラ                              | os         | 0       | 1        |           |                      |                           | ŏ               | Т          |
| )        |                       |                      |                                         | Rhyacophila yamanakensis                                 | ヤマナカナカ゛レトヒ゛ケラ                                 | os         | Ŭ       |          | 0         |                      | 0                         |                 |            |
|          |                       |                      | 13.03.51.5                              | <i>Rhyacophila</i> sp.                                   | ナガレトビケラ属                                      | os         | 0       |          |           |                      | $ldsymbol{ldsymbol{eta}}$ |                 | lacksquare |
|          |                       |                      | コエク゛リトヒ゛ケラ                              | Apatania sp.                                             | コエク゛リトヒ゛ケラ属                                   | βm         | ,       |          | 0         | <u> </u>             | igspace                   |                 | $\vdash$   |
| +        |                       |                      | アシエタ゛トヒ゛ケラ<br>ニンキ゛ョウトヒ゛ケラ               | Anisocentropus immunis<br>Goera japonica                 | コハ゛ントヒ゛ケラ<br>ニンキ゛ョウトヒ゛ケラ                      | βm         | 1       | 1        |           | l                    | $\vdash \vdash$           | 0               | $\vdash$   |
|          |                       |                      | カクツツトヒ゛ケラ                               | Goerodes sp.                                             | コカクツツトヒ゛ケラ属                                   | 0.3        | 38      | 0        | 0         | 0                    |                           | 0               | (          |
| ;        |                       |                      | ヒケ゛ナカ゛トヒ゛ケラ                             | Ceraclea sp.                                             | タテヒゲナガトビケラ属                                   | os         | 2       |          |           |                      |                           | Ů               |            |
| '        |                       |                      |                                         | <i>Mystacides</i> sp.                                    | アオヒゲナガトビケラ属                                   | $\beta$ m  | 2       |          |           |                      |                           | 0               | (          |
| 4        |                       | 11 am                | 4. 5 4. 5 \ F 8                         | Oecetis sp.                                              | クサツミトビケラ属                                     |            | 7       | 0        | 0         | 0                    | <b></b>                   |                 | $\vdash$   |
| H        |                       | ハエ                   | カ゛カ゛ンホ゛                                 | Antocha sp.                                              | ウスハ゛ヒメカ゛カ゛ンホ゛属<br>Hexatoma属                   | os<br>os   | 0       | 1        | 4         | -                    | <del></del>               |                 | $\vdash$   |
| Ή        |                       |                      |                                         | <i>Hexatoma</i> sp. <i>Tipula</i> sp.                    | hexatoma属<br>キリウシ゛カ゛カ゛ンホ゛属                    | βm         |         | 0        | 0         | 0                    | ┢                         |                 | $\vdash$   |
| 7        |                       |                      | チョウハ゛エ                                  | Psychoda sp.                                             | Psychoda属                                     | ps         |         |          |           |                      |                           | 1               | Г          |
| :        |                       |                      | ユスリカ                                    | Glyptotendipes sp.                                       | セホ゛リュスリカ属                                     |            |         |          |           |                      | 406                       |                 |            |
| ŀ        |                       |                      |                                         | Polypedilum sp.                                          | ハモンユスリカ属                                      | $\alpha$ m |         |          |           |                      |                           |                 | (          |
| 5        |                       |                      |                                         | Pentaneurini                                             | ヤマトヒメユスリカ族                                    |            | _       | 8        | 4         | 1                    | lacksquare                | 1               | (          |
| ,        |                       |                      |                                         | Tanytarsini                                              | とケ゛ユスリカ族                                      | <b>—</b>   | 2       | 150      | 691       | 7.0                  | 227                       | 0               | (          |
| 7        |                       |                      |                                         | Orthocladiinae<br>Chironomidae pupa                      | エリユスリカ亜科<br>ユスリカ科 蛹                           |            | 12      | 159<br>2 | 631<br>48 | 76<br>3              | 337<br>108                | 83<br>24        | 1          |
| )        |                       |                      | ブ`ユ                                     | Simulium sp.                                             | アシマタ゛ラフ゛ュ属                                    | os         | Ö       | 1        | 0         | 0                    | 100                       | 0               |            |
| )        |                       |                      | アシナカ゛ハ゛エ                                | Dolichopodidae                                           | アシナカ゛ハ゛エ科                                     | 0.5        |         |          |           | 1                    |                           |                 |            |
| _        |                       |                      |                                         |                                                          |                                               |            |         |          |           | . — —                |                           | . —             |            |
|          |                       | コウチュウ                | オト゛リハ゛エ<br>ヒラタト゛ロムシ                     | Empididae<br><i>Ectopria</i> sp.                         | オドリバエ科<br>チビヒゲナガハナノミ属                         |            |         |          |           |                      |                           |                 | (          |

注)〇印は定性採集で出現した種を示す。

# 表4-4 出現した底生動物(2007年3月)

調査日 : 2007年3月6日~7日 採集面積: 0.27m<sup>2</sup>

|                            | 採集 <u>面積: 0.27m<sup>2</sup></u> |               |                                         |                                                   |                                    |            |               |               |               |         |          |       |       |
|----------------------------|---------------------------------|---------------|-----------------------------------------|---------------------------------------------------|------------------------------------|------------|---------------|---------------|---------------|---------|----------|-------|-------|
|                            |                                 |               |                                         |                                                   |                                    | 水質汚        | St. a         | St.b          | St. c         | St. d   | St. e    | St. f | St. i |
| No.                        | 綱                               | 目             | 科                                       | 学名                                                | 和名                                 | 濁階級        |               |               |               | 50. a   | 00.0     |       |       |
| 1                          | ウス゛ムシ                           | —             | —<br>—                                  | Turbellaria                                       | ウス゛ムシ綱                             |            | 129           | 2             | 4             | 1       |          | 2     | 0     |
| 3                          | マキカ゛イ<br>マキカ゛イ                  | ニナ<br>モノアラカ゛イ | カワニナ<br>サカマキカ゛イ                         | Semisulcospira libertina<br>Physa acuta           | カワニナ<br>サカマキカ゛イ                    | os<br>ps   | 0             |               | 0             | 16      |          |       |       |
| 4                          | 11/1/1                          | 17/////       | ヒラマキカ゛イ                                 | Gyraulus sp.                                      | Gyraulus属                          | ps         | 1             |               |               | 10      |          |       |       |
| 5                          | ミミス゛                            | オヨキ゛ミミス゛      | オヨキ゛ミミス゛                                | Lumbriculidae                                     | オヨギミミズ科                            | os         | 0             | 1             |               |         |          |       |       |
| 6                          |                                 | ナカ゛ミミス゛       | ナカ゛ミミス゛                                 | Haplotaxidae                                      | th゙ミミズ科                            | os         |               |               | 0             |         |          |       |       |
| 7 8                        |                                 |               | ツリミミス*<br>ミス* ミミス*                      | Lumbricidae<br>Naididae                           | )りミミズ科<br>ミズミミズ科                   | αm         | 97            | 405           | 1,092         | 1, 086  | 1        | 5     | 2     |
| 9                          | ł                               |               | <u> </u>                                | Branchiura sowerbyi                               | エラミミス                              | αm<br>ps   | 91            | 405           | 1,092         | 1,000   | 1        | Э     |       |
| 10                         | i                               |               | 11.55/                                  | Tubificidae                                       | 小ミシズ科                              | ps         | 0             |               |               |         |          |       |       |
| 11                         | ヒル                              | ヒル            | イシヒ゛ル                                   | Erpobdella lineata                                | シマイシヒ゛ル                            | lpha m     | 4             | 0             | 1             | 0       |          |       |       |
| 12                         | hr                              | h *           |                                         | Erpobdellidae                                     | イシビル科                              | αm         | C 4           | 0.0           | 20            | 1.0     | 0        | 0     | CO    |
| 13<br>14                   | クモ<br>甲殻                        | タ゛ニ<br>ワラシ゛ムシ | ミス゛ムシ                                   | Acarina<br>Asellus hilgendorfi hilgendorfi        | タ゛ニ目<br>ミス゛ムシ                      | os<br>αm   | 64<br>5       | 96<br>5       | 32<br>4       | 16<br>2 | 72       | 0     | 60    |
| 15                         | 11.11.71                        | BUILE.        | マミス゛ヨコエヒ゛                               | Crangonyx floridanus                              | フロリタ゛マミス゛ヨコエヒ゛                     | Ct III     | 1             | 4             | 0             |         |          | 4     | 0     |
| 16                         | 1                               | エヒ゛           | ヌマエヒ゛                                   | Neocaridina denticulata                           | ミナミヌマエヒ゛                           | $\alpha$ m |               |               | 0             | 0       | 0        |       | 0     |
| 17                         |                                 |               | 2114451145                              | Paratya improvisa                                 | ヌカエヒ゛                              | βm         | 0             | 0             | 0             |         |          |       |       |
| 18<br>19                   | 昆虫                              | カケ゛ロウ         | アメリカサ゛リカ゛ニ<br>トヒ゛ イロカケ゛ロウ               | <i>Procambarus clarkii Paraleptophlebia</i> sp.   | アメリカサ゛リカ゛ニ<br>トヒ゛イロカケ゛ロウ属          | αm<br>os   | 0             |               |               |         |          |       |       |
| 20                         | 比虫                              | My Py         | モンカケ゛ロウ                                 | Ephemera japonica                                 | フタスシ゛モンカケ゛ロウ                       | os         | 0             |               |               |         |          |       |       |
| 21                         | i                               |               | 20,00                                   | Ephemera strigata                                 | モンカケ゛ロウ                            | os         | Ŏ             |               |               |         |          |       |       |
| 22 23                      | 1                               |               | ヒメシロカケ゛ロウ                               | Caenis sp.                                        | ヒメシロカケ゛ロウ属                         | $\beta$ m  | 3             |               | 1             |         |          |       | 1     |
| 23                         |                                 |               | マタ゛ラカケ゛ロウ                               | Cincticostella nigra                              | クロマタ゛ラカケ゛ロウ                        | os         | 1             |               |               |         |          |       |       |
| 24                         |                                 |               |                                         | Cincticostella okumai                             | オオクママタ゛ラカケ゛ロウ                      | os         | 0             |               |               | 0       |          |       |       |
| 25<br>26<br>27             | l                               |               |                                         | Drunella basalis<br>Drunella cryptomeria          | オオマタ゛ラカケ゛ロウ<br>ヨシノマタ゛ラカケ゛ロウ        | os<br>os   | 0             |               | 0             |         | l        |       |       |
| 27                         | 1                               | 1             |                                         | Ephacerella longicaudata                          | シリナカ゛マタ゛ラカケ゛ロウ                     | os         |               |               | ŏ             | 0       |          |       | 0     |
| 28<br>29                   | 1                               | 1             |                                         | Ephemerella ishiwatai                             | イシワタマタ゛ラカケ゛ロウ                      | αm         | 1             |               |               |         |          |       |       |
| 29                         | ļ                               |               |                                         | Ephemerella setigera                              | クシケ゛マタ゛ラカケ゛ロウ                      | os         | 97            |               |               |         |          |       |       |
| 30                         | 1                               | 1             |                                         | Torleya japonica                                  | エラフ゛タマタ゛ラカケ゛ロウ                     | os<br>0    | 0             | 0             | 0             | 0       | -        |       |       |
| 31<br>32                   | l                               |               | ヒメフタオカケ゛ロウ                              | Uracanthella rufa                                 | アカマタ゛ラカケ゛ロウ<br>ヒメフタオカケ゛ロウ属         | βm<br>os   | 7             | 8             | 0             | 2       | 1        | 0     |       |
| 33                         | 1                               |               | コカケ゛ロウ                                  | <i>Ameletus</i> sp.<br><i>Acentrella sibirica</i> | ミシ゛カオフタハ゛コカケ゛ロウ                    | os         | 33            | 8             | 1             | 25      | <b>-</b> | 4     | 1     |
| 33<br>34                   | i                               |               | - % / - /                               | Baetiella japonica                                | フタハ゛コカケ゛ロウ                         | os         | 1             | 48            | 291           | 3       | 1        | 1     | 0     |
| 35                         | 1                               |               |                                         | Baetis chocoratus                                 | トヒ゛イロコカケ゛ロウ                        | os         | 1             | 37            | 64            | 1       |          | 4     |       |
| 36                         |                                 |               |                                         | Baetis sahoensis                                  | サホコカケ゛ロウ                           | $\alpha$ m | 100           | 68            | 4             | 9       | 1        | 4     | 0_    |
| 37                         | l                               |               |                                         | Baetis thermicus<br>Baetis voshinensis            | シロハラコカケ゛ロウ<br>ヨシノコカケ゛ロウ            | os         | 108           | 451           | 94<br>16      | 64      |          | 2     | 1     |
| 38<br>39                   |                                 |               |                                         | <i>Baetis yosninensis</i><br><i>Baetis</i> sp.D   | Dコカケ゛ロウ                            | os         | 137           | 285           | 16            | 3       |          |       |       |
| 40                         | l                               |               |                                         | Baetis sp.E                                       | Eコカケ゛ロウ                            |            | 33            | 36            |               | 0       |          |       | 2     |
| 41                         | 1                               |               |                                         | Baetis sp.H                                       | Нコカケ゛ロウ                            |            |               |               | 1             | 1       |          |       | 0     |
| 42                         | l                               |               | チラカケ゛ロウ                                 | Isonychia japonica                                | チラカケ゛ロウ                            | os         | 0             | 0             | 0             |         |          |       |       |
| 43                         |                                 |               | ヒラタカケ゛ロウ                                | Ecdyonurus bajkovae                               | オニヒメタニカ゛ワカケ゛ロウ                     | os         | 6             |               | 0             |         |          |       |       |
| 44<br>45                   |                                 |               |                                         | Ecdyonurus kibunensis<br>Ecdyonurus yoshidae      | キフ゛ネタニカ゛ワカケ゛ロウ<br>シロタニカ゛ワカケ゛ロウ     | os<br>os   | 2             | 12            | 0             | 6       |          | 0     | 0     |
| 46                         | ł                               |               |                                         | Epeorus latifolium                                | エルモンヒラタカケ゛ロウ                       | os         | 6             | 0             | 1             | О       |          |       |       |
| 47                         | 1                               | トンホ゛          | カワトンホ゛                                  | Calopteryx atrata                                 | ハク゛ロトンホ゛                           | βm         | 0             | $\overline{}$ | 0             | 0       | 0        |       | 0     |
| 48                         | 1                               |               |                                         | Calopteryx cornelia                               | ミヤマカワトンホ゛                          | os         | Ō             |               |               |         |          |       |       |
| 49                         | Į.                              |               | サナエトンホ゛                                 | Anisogomphus maacki                               | ミヤマサナエ                             | βm         |               |               | 0             |         |          | 0     | 0     |
| 50                         |                                 |               |                                         | Davidius sp.                                      | ダビドサナエ属                            | 0          | 0             |               | 0             | 0       |          |       | 0     |
| 51<br>52                   | ł                               |               |                                         | Onychogomphus viridicosta<br>Sieboldius albardae  | オナカ゛サナエ<br>コオニヤンマ                  | β m<br>β m | 0             | 0             | 0             | 0       | l        |       |       |
| 53                         | i                               | カワケ゛ラ         | オナシカワケ゛ラ                                | Amphinemura sp.                                   | フサオナシカワケ゛ラ属                        | os         | 1             |               |               |         |          | 0     |       |
| 54                         | i                               | ~ / / /       | 4,4,4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Nemoura sp.                                       | オナシカワケ゛ラ属                          | os         | 4             | 1             |               |         |          | Ŭ     | 0     |
| 55                         | 1                               |               | カワケ゛ラ                                   | <i>Kamimuria</i> sp.                              | カミムラカワケ゛ラ属                         |            | 0             | 0             |               |         |          |       |       |
| 56                         |                                 |               |                                         | <i>Neoperla</i> sp.                               | フタツメカワケ゛ラ属                         | os         |               | 0             | 0             |         |          | 0     | 0     |
| 57<br>58                   |                                 |               | アミメカワケ゛ラ                                | <i>Oyamia</i> sp.                                 | オオヤマカワケ゛ラ属<br>  コク゛サミト゛リカワケ゛ラモト゛キ属 | os         | 0             | 2             | 0             | 0       |          |       |       |
| 59                         |                                 |               | ノミメルソクーフ                                | <i>Ostrovus</i> sp.<br><i>Stavsolus japonicus</i> | マン・リスト・リカンク・フェト・イ/馬                | os<br>os   | 1             | 0             | 0             |         |          |       |       |
| 60                         | 1                               | トヒ゛ケラ         | シマトヒ゛ケラ                                 | Cheumatopsyche brevilineata                       | コカ、タシマトヒ、ケラ                        | βm         | 1             |               |               | 0       | 1        |       |       |
| 61                         | ]                               |               |                                         | Hydropsyche orientalis                            | ウルマーシマトヒ゛ケラ                        | os         | 0             | 6             | 4             | 1       |          | 5     | 0     |
| 62                         | l                               |               | イワトヒ゛ケラ                                 | <i>Plectrocnemia</i> sp.                          | ミヤマイワトビケラ属                         | os         |               | 0             |               |         |          |       |       |
| 63<br>64                   | l                               |               | tケ゚ナガカワトビケラ<br>ヤマトビケラ                   | Stenopsyche marmorata Glossosoma sp.              | ヒゲナガカワトビケラ<br>ヤマトビケラ属              | os<br>os   | 7             | 9             | 4             | 2       | l        | 1     |       |
| 65                         | l                               |               | ナカ゛レトヒ゛ケラ                               | Glossosoma sp.<br>Rhyacophila brevicephala        | とロアタマナカ゛レトヒ゛ケラ                     | os         | <u> </u>      |               |               |         | l        |       |       |
| 66                         | 1                               | 1             | , , , , , , , , , , , , , , , , , , , , | Rhyacophila nigrocephala                          | ムナク゛ロナカ゛レトヒ゛ケラ                     | os         | 2             | 3             | 0             |         |          |       |       |
| 67                         | I                               | 1             |                                         | Rhyacophila transquilla                           | トランスクィラナカ゛レトヒ゛ケラ                   | os         | 2             | 1             |               |         |          |       |       |
| 68                         |                                 | 1             | h h m / ) , * ) =                       | Rhyacophila yamanakensis                          | ヤマナカナカ゛レトヒ゛ケラ                      | os         |               | 1             |               |         |          |       |       |
| 69                         | 1                               | 1             | カクスイトヒ゛ケラ                               | Micrasema sp.                                     | マルツツトヒ゛ケラ属<br>コハ゛ントヒ゛ケラ            | 0 -        | 0             | -             | -             |         | 1        |       |       |
| 70<br>71                   | l                               | 1             | アシエタ゛トヒ゛ケラ<br>カクツツトヒ゛ケラ                 | Anisocentropus immunis<br>Goerodes sp.            | コハ ントヒ グフ<br>コカクツツトヒ゛ケラ属           | βm         | 0             | 0             | 0             |         | 1        |       |       |
| 72                         | 1                               | 1             | ヒケ゛ナカ゛トヒ゛ケラ                             | <i>Mystacides</i> sp.                             | アオヒケ゛ナカ゛トヒ゛ケラ属                     | β m        | $\overline{}$ |               | Ö             |         | 1        |       |       |
| 72<br>73<br>74             | 1                               |               |                                         | Oecetis sp.                                       | クサツミトビケラ属                          |            | 0             |               | Ŭ             |         |          |       |       |
| 74                         | I                               | ハエ            | カ゛カ゛ンホ゛                                 | Antocha sp.                                       | ウスハ゛ヒメカ゛カ゛ンホ゛属                     | os         | 1             | 8             | 0             |         |          |       | 0     |
| 75                         | l                               | 1             | チョウハ゛エ                                  | Psychoda sp.                                      | Psychoda属                          | ps         | 0             |               | -             |         | <b>.</b> | 0     |       |
| 77                         | ł                               | 1             | ヌカカ<br>ユスリカ                             | Ceratopogonidae  Chironomus sp.                   | ヌカカ科<br>ユスリカ属                      | os<br>ps   | 2             | 0             | 1             |         | <b>-</b> | 0     |       |
| 75<br>76<br>77<br>78<br>79 | İ                               |               | <i>-</i> ^7 <i>N</i>                    | Glyptotendipes sp.                                | セホ゛リュスリカ属                          | μs         | 1             | 1             | <u> </u>      |         | 0        |       |       |
| 79                         | j                               |               |                                         | <i>Micropsectra</i> sp.                           | ナカ゛スネユスリカ属                         | $\alpha$ m | 1             | 1             | 0             | 32      |          | 0     |       |
| 80                         | 1                               |               |                                         | <i>Microtendipes</i> sp.                          | ツヤムネユスリカ属                          | $\alpha$ m |               |               |               | 0       |          |       |       |
| 81                         | l                               |               |                                         | Polypedilum sp.                                   | ハモンユスリカ属                           | αm         | 0             |               |               | 0       | 0        | 0     |       |
| 82                         | ł                               |               |                                         | Rheotanytarsus sp.                                | ナカ゛レユスリカ属                          | αm         | -             | -             |               | 0       | 0        |       |       |
| 83<br>84                   | ł                               |               |                                         | <i>Tanytarsus</i> sp.<br>Pentaneurini             | とケ゛ユスリカ属<br>ヤマトヒメユスリカ族             | <b>-</b>   | 1             | 0             | 0             | 0       | 1        | 1     |       |
| 85                         | İ                               |               |                                         | Chironominae                                      | コスリカ亜科                             | ps         | 1             |               |               | 0       |          | 1     | 0     |
| 86                         | Ī                               |               |                                         | Diamesinae                                        | ヤマユスリカ亜科                           | os         | 37            |               | 0             | 1       |          | 0     | 1     |
| 87                         | 1                               |               |                                         | Orthocladiinae                                    | エリユスリカ亜科                           |            | 1,406         | 452           | 680           | 614     | 724      | 57    | 340   |
| 88                         | l                               |               |                                         | Chironomidae pupa                                 | コスリカ科蛹                             |            | 196           | 65            | 128           | 136     | 220      | 13    | 44    |
| 89<br>90                   | l                               |               | ブ゛ュ<br>オト゛リハ゛ェ                          | Simulium sp.                                      | アシマタ゛ラフ゛ュ属                         | os         | 0             |               | 8             |         | 9        | 1     |       |
| 91                         | l                               | コウチュウ         | オト リハ ユ<br>ヒラタト゛ロムシ                     | Empididae<br><i>Eubrianax</i> sp.                 | オト゛リハ゛エ科<br>マルヒラタト゛ロムシ属            | βт         | 4             | l             | 0             |         | 3        |       |       |
| 92                         | İ                               | - 11 - 17     | C//  PM/                                | <i>Mataeopsephus</i> sp.                          | ヒラタト゛ロムシ属                          | βm         | - T           | 1             | $\overline{}$ |         | l        |       |       |
|                            | Offin Lo                        | 50150H-       | 出租」た種                                   | ± → 1-                                            |                                    |            |               |               |               |         |          |       |       |