[報告]

都市排水の環境影響に関する研究(その5)

- 多摩川中流部の水質に及ぼす下水処理水の影響-

竹内 健* 和波 一夫

(*現·東京都環境局自然環境部)

1 はじめに

高度経済成長期を迎えた1960年代の都内河川は、人 口や産業が集中したことに伴う汚水の増加により水質 汚濁が進行した。しかし、その後の工場や事業場に対 する規制指導や下水道の普及等の各種施策を実施して きたことにより、1970年代前半以降は全体として着実 に改善されてきた¹⁾。多摩川中流部においても同様に 水質汚濁が進行していたが、生物化学的酸素要求量(B OD) は1978年度の11mg/Q (環境基準点:多摩川原橋) をピークに改善傾向が見られ、1997年度以降は中流部 全域で河川C類型の環境基準 (BOD:5mg/l)を達成 し、2001年3月には河川B類型の環境基準(BOD:3mg/ (a) へと格上げされた²⁾。このように水質汚濁の代表的 な指標の一つであるBODは大きく改善されたが、栄 養塩類である窒素やりんについてはBODのような顕 著な改善傾向は認められない。多摩川中流部における 現時点の水質課題を明らかにするとともに、今後の更 なる水質改善策を検討するため、多摩川中流部の縦断 的な水質調査を行った。その結果について、報告する。

2 調査河川の概要

秩父山系笠取山(標高1,941m)を水源とし東京湾へと流入する多摩川は、河川延長138km(東京都内98.65 km)、流域面積1,240km²(支川を含めた東京都管内958.4 km²)の一級河川である。流域は山梨県、東京都、神奈川県の三都県にまたがり、うち東京都管内の流域人口は296万人(支川を含む。平成16年度)である。河川形態及び水質等の観点から、多摩川は次の3区間に分けられる。上流部は羽村堰より上流の区間で、高い自然度、安定した流量、少ない流入負荷という特徴があり、水質的にも良好な区間である。中流部は羽村堰から田園調布堰までの区間で、取水による流量の減

少、支川や下水処理場(以下、処理場)からの流入負荷量の増加等により、この区間から多摩川の水質は悪化する。下流部は田園調布堰から下流の区間で、中流部と比較すると流入負荷は減少し、河口から遡上する海水の影響を受けるという特徴がある。なお、環境基準の類型指定は、和田橋より上流が河川AA類型、和田橋から拝島橋までが河川A類型、拝島橋から下流が河川B類型にそれぞれ指定されている。

中流部の流域には 9 か所の処理場が稼働しており、東京都下水道局多摩川上流水再生センター(以下、多摩川上流処理場)や同八王子水再生センター(以下、八王子処理場)など 6 か所の処理場では、下水処理水(以下、処理水)を多摩川に直接放流している。これら 6 か所の処理場から排出される処理水の合計量は、一日に約 60 万m³である。

3 調査方法

(1)調査地点及び調査日、回数

調査地点を**図1**に示す。また、各地点における調査 日を**表1**に示す。多摩川上流部1地点(St. a)及び中 流部14地点(St. b~St. n)、中流部流域の処理場5地 点(St. ①~St. ⑤)の合計20地点を調査地点とした。 調査期間は2007年3月から2007年12月までで、各地 点それぞれ2回から8回の調査を行った。

(2) 水質分析

図1に示した20地点において、生物化学的酸素要求量 (BOD)、硝化細菌の作用を抑制した方法によるBOD (C-BOD)、化学的酸素要求量 (COD)、浮遊物質量 (SS)、全窒素 (T-N)、アンモニア性窒素 (NH_4-N) 、亜硝酸性窒素 (NO_2-N) 、硝酸性窒素 (NO_3-N) 、全りん (T-P)、りん酸性りん (PO_4-P) 、全亜鉛、エストロゲン (ES)、水素

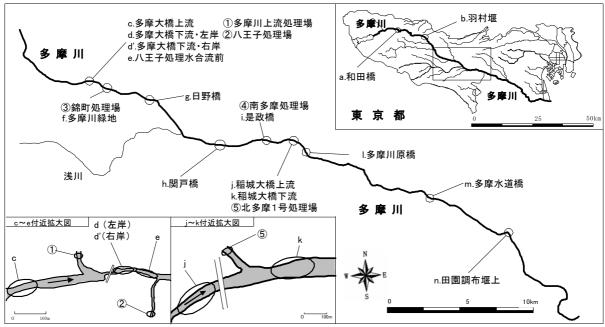


図1 調査地点

イオン濃度(pH)、溶存酸素量(DO)、水温等の測定を行った。ES以外の水質項目については、工場排水試験方法JIS-K102に従って分析を行った。ESは日本エンバイロケミカルズ(株)製のELISA法キットを用いて分析を行い、一部の試料についてはLC-MS/MS法でも分析を行った。また、St.c及びSt.d~St.d'、St.f、St.①、St.②の5地点においては、水質調査方法(昭和46年9月30日環水管第30号)3)に従って河川や処理水の水量の測定を行った。

4 結果

(1)環境基準の適合状況

各地点における水質分析結果のうち、水質汚濁に係る環境基準が設定されている水質項目(pH、SS、DO、BOD、 NO_3 -N及び NO_2 -N、全亜鉛)について、それぞれの最大値及び最小値、環境基準の超過回数を表2に示す。また、BOD、 NO_3 -N及び NO_2 -N、全亜鉛の測定結果について、それぞれ図2-2、図2-5(グラフ中の NO_2 -N、 NO_3 -N)、図2-7に示す。各地点の測定値と環境基準値を比較した結果、いずれの地点においても環境基準に概ね適合していた。基準を超過した水質項目はBOD及びpH、SS、全亜鉛で、BOD及び全亜鉛については処理水が流入した直後の地点で、pHについては処理水

表1 調査地点名と調査日

	調査日								
No. 地点名	3/13 -14	6/19	7/24	8/7	9/26	10/16	11/20	12/11	
St.a 和田橋	-	0	-	_	-	0	_	_	
St.b 羽村堰	-	0	-	-	_	0	-	_	
St.c 多摩大橋上流	0	0	0	0	0	0	0	0	
St.d 多摩大橋下流·左岸	0	ı	0	0	0	0	0	0	
St.d'多摩大橋下流·右岸	0*	ı	0	0	0	0	0	0	
St.e 八王子処理水合流前	ı	ı	-	0	0	0	0	0	
St.f 多摩川緑地	0	ı	0	0	0	0	0	0	
St.g 日野橋	1	0	0	0	0	0	0	0	
St.h 関戸橋	_	0	0	0	0	0	0	0	
St.i 是政橋	_	0	0	0	0	0	0	0	
St.j 稲城大橋上流	0	ı	0	0	0	0	0	0	
St.k 稲城大橋下流	0	ı	0	0	0	0	0	0	
St.I 多摩川原橋	0	0	0	0	0	0	0	0	
St.m 多摩水道橋	ı	0	0	0	0	0	0	0	
St.n 田園調布堰	1	0	0	0	0	0	0	0	
St.① 多摩川上流処理場	0	ı	0	0	0	0	0	0	
St.② 八王子処理場	0	ı	0	0	0	0	0	0	
St.③ 立川市錦町処理場	ı	ı	-	ı	-	0	0	0	
St.④ 南多摩処理場	-	-	-	-	-	0	0	0	
St.⑤ 北多摩1号処理場	0	-	0	0	0	0	0	0	

*気温、水温、pH、EC、DOのみ測定

が流入する前の地点で、それぞれの基準値を超過することが多かった。また、SSについては9月26日の調査では13地点全てで基準値を大きく超過したが、これは直前の大雨(9月4日~7日の245mmと9月11日~12日の80mm)で大量の土砂等が上流から流入したことが原因と考えられる。

(2) 水質の縦断変化

8月及び10月、12月における各地点の水温を**図2** -1に示す。一般的に処理水が流入した直後では河川

調査地点			St.a	St.b	St.c	St.d	St.d'	St.e	St.f	St.g	St.h	St.i	St.j	St.k	St.I	St.m	St.n
調査	調査回数		2	2	8	7	7	5	7	7	7	7	7	7	8	7	7
pН		最大	8.7	8.6	9.2	7.3	9.1	8.5	8.0	8.6	8.6	8.3	8.2	7.2	8.3	8.5	8.3
		最小	7.3	7.6	8.0	7.0	7.8	7.5	7.1	7.7	7.5	6.8	6.7	6.2	7.2	7.3	7.3
	基準捷	2過回数	1	1	3	0	2	0	0	1	1	0	0	1	0	7 8.5	0
	(mg/L)	最大	36.1	30.2	77.0	37.6	82.8	70.0	73.2	69.5	50.0	46.8	34.0	33.8	41.6	41.1	49.0
SS	(mg/L)	最小	1.0	1.2	0.6	1.3	1.1	1.4	1.1	1.4	1.6	1.2	1.6	1.2	1.7	1.3	1.6
	基準規	2過回数	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	(mg/L)	最大	-	-	13.5	9.4	12.7	11.4	10.2	11.8	11.6	11.2	11.7	9.8	10.3	9.5	10.3
DO		最小	_	-	9.4	6.9	9.2	9.1	9.2	8.6	7.1	7.1	7.1	6.4	7.4	7.2	7.1
	基準調	2過回数	-	-	0	0	0	0	0	0	0	0	0	0	0	7 8.5 7.3 0 41.1 1.3 1 9.5 7.2 0 2.2 0.6 0 6.5 3.2 0 25.8 6.2	0
	(mg/L)	最大	0.9	1.1	1.4	5.9	2.4	2.5	2.6	2.0	1.4	1.9	1.9	3.7	3.2	2.2	2.4
BOD	(IIIg/L)	最小	0.5	0.6	0.1	0.9	0.3	0.7	0.1	0.4	0.6	0.4	0.1	1.1	0.6	0.6	0.7
	基準規	2過回数	0	0	0	3	0	0	0	0	0	0	0	1	1	0	0
NO₂及び	(mg/L)	最大	0.9	0.9	1.5	8.3	1.9	3.5	7.9	6.1	6.7	7.6	7.0	7.8	7.3	6.5	6.4
NO ₂ X O		最小	0.7	0.7	0.9	3.3	1.1	1.5	1.6	1.6	2.5	3.3	3.3	5.1	3.8	3.2	3.3
1103	基準起	2過回数	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(μg/L)	最大	7.0	6.2	13.6	38.1	7.7	13.7	22.5	19.4	9.8	17.9	12.5	26.6	15.9	25.8	10.6
全亜鉛	(μg/L)	最小	0.3	1.1	0.8	14.2	0.1	2.0	5.0	5.3	5.7	3.7	3.5	7.4	5.9	6.2	4.8
	基準制	7過回数	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0

表2 各地点における水質測定結果(最大値・最小値)と環境基準の超過回数

の水温は上昇するが、St.d及びSt.f、St.kにおいて も同様な傾向が見られた。特に、多摩川上流処理場か らの処理水が流入する地点直後に位置する St. d での 水温変化は著しく、処理水流入前の St. c と比較して 12月では12℃の温度差が生じた。一方、同じく処理水 が流入する地点後に位置する St.g 及び St.i では、水 温変化がほとんど見られなかった。これは、処理水の 流入地点からそれぞれの調査地点までに若干の距離が あったため外気温や河川水温の影響を受けたことと、 各地点における河川水量に対して流入する処理水の割 合が比較的少なかったことが要因として考えられた。 また、St.dと流芯を挟んで対岸に位置するSt.d'では、 水温及び後述する水質濃度についてはSt.cと同じ傾 向が見られた。このことから、多摩川上流処理場から 放流された処理水は右岸側のSt.d'には流達するこ となく、左岸側に沿って流下していると推測された。

St. a から St. h までの各地点におけるBOD及びC -BOD(図2-2)の濃度を比較した結果、いずれの水質項目も処理水が流入した後に濃度が高くなったが、河川の流下に伴って濃度が低くなる傾向が見られた。一方、同区間におけるCOD(図2-3)及びT -N(図2-4)、T-P(図2-6)、全亜鉛の各濃度、ES作用強度 $^{(1)}$ (図2-8)を比較した結果、いずれの水質項目も処理水が流入した後に高くなり、特

に St. d でのT-P濃度は 5.8~77 倍、全亜鉛濃度は 1.5~38 倍、E S 作用強度は 25~174 倍も高くなった。 その後、E S 作用強度は流下に伴って低くなる傾向が 見られたが、その他の水質項目については大きな変化 は認められなかった。また、B O D をはじめとする全 ての水質項目について、St. h から St. n までの各地点 における濃度を比較した結果、St. h から St. k までの各地点では濃度が上昇し、St. k から St. n までの各地点では濃度が低下する傾向が見られた。St. h から St. k までの各地点で濃度が上昇した原因としては、St. h で は浅川(北野処理場からの処理水流入)や根川(浅川 処理場からの処理水流入)、St. i では南多摩処理場、 St. k では北多摩1号処理場といった、流入する支川や 処理水の影響を受けたためと推測された。

注) ES作用強度は、既報 $^{4)}$ の比活性値を用いて 17β -エストラジオールとエストロンの測定値から算出した。

(3) 処理場からの流入負荷量

多摩川上流処理場及び八王子処理場から流入する 負荷量と St.f における負荷量に占める処理水の割合 を表3に示す。多摩川上流処理場及び八王子処理場か ら放流される処理水量、St.f における河川流量、これ らの地点における各水質項目については各調査日の一 日1回測定の数値を用いたが、この数値をその日の平 均的数値とみなして試算した。

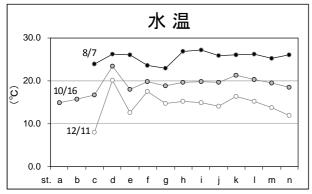


図2-1 水質の縦断変化(水温)

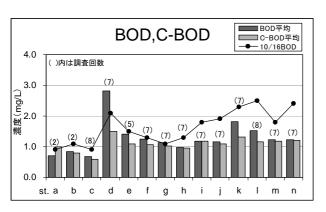


図2-2 水質の縦断変化 (BOD, C-BOD)

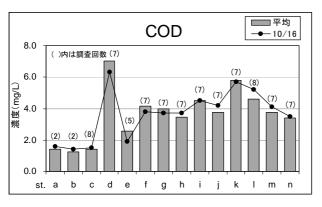


図2-3 水質の縦断変化(COD)

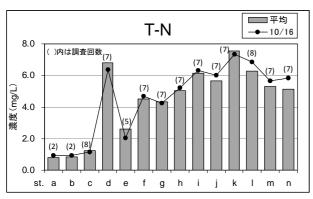


図2-4 水質の縦断変化 (T-N)

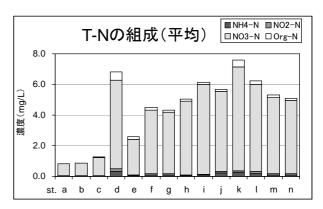


図2-5 水質の縦断変化(T-Nの平均組成)

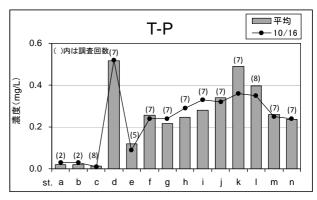


図2-6 水質の縦断変化 (T-P)

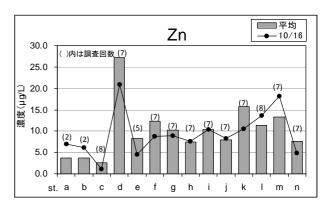


図2-7 水質の縦断変化(全亜鉛)

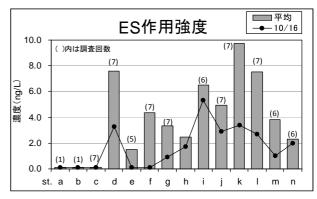


図2-8 水質の縦断変化(ES作用強度)

項目		多摩川上流処理場				八王子処理	場		St.f	St.fにおける 処理水の割合		
		濃度 (上①)	流量 (上②)	負荷量 (上③)	濃度 (八①)	流量 (八②)	負荷量 (八③)	濃度 (f①)	流量 (f②)	負荷量 (f③)	流入比率(%)	負荷量比率(%)
BOD	3月	5.6	150,000	840	2.6	90,000	234	2.0	660,000	1,320	36	81
	8月	3.7	230,000	851	2.0	61,000	122	0.8	1,500,000	1,200	19	81
	10月	2.1	170,000	357	1.8	130,000	234	1.3	620,000	806	48	73
	12月	6.3	140,000	882	4.0	150,000	600	2.6	440,000	1,144	66	130
	3月	2.0	150,000	300	2.0	90,000	180	1.4	660,000	924	36	52
C-BOD	8月	1.9	230,000	437	1.1	61,000	67	0.6	1,500,000	900	19	56
0 000	10月	2.5	170,000	425	2.4	130,000	312	1.9	620,000	1,178	48	63
	12月	3.5	140,000	490	2.9	150,000	435	1.6	440,000	704	66	131
	3月	11.8	150,000	1,770	12.2	90,000	1,098	5.8	660,000	3,828	36	75
COD	8月	8.3	230,000	1,909	9.5	61,000	580	3.1	1,500,000	4,650	19	54
	10月	8.4	170,000	1,428	8.7	130,000	1,131	3.8	620,000	2,356	48	109
	12月	9.5	140,000	1,330	10.5	150,000	1,575	6.9	440,000	3,036	66	96
	3月	8.7	150,000	1,302	11.3	90,000	1,021	5.1	660,000	3,386	36	69
T-N	8月	6.7	230,000	1,550	11.6	61,000	706	3.2	1,500,000	4,845	19	47
1 11	10月	9.1	170,000	1,547	15.1	130,000	1,957	4.7	620,000	2,902	48	121
	12月	11.1	140,000	1,553	15.6	150,000	2,340	8.6	440,000	3,771	66	103
	3月	0.9	150,000	128	1.5	90,000	133	0.5	660,000	343	36	76
T-P	8月	0.7	230,000	154	0.1	61,000	9	0.2	1,500,000	255	19	64
1-6	10月	0.8	170,000	131	0.7	130,000	86	0.2	620,000	149	48	146
	12月	0.9	140,000	127	0.4	150,000	65	0.5	440,000	202	66	95
	3月	33.0	150,000	4,950	26.2	90,000	2,358	22.5	660,000	14,850	36	49
全亜鉛	8月	27.7	230,000	6,371	24.2	61,000	1,476	6.1	1,500,000	9,150	19	86
	10月	25.0	170,000	4,250	24.5	130,000	3,185	8.7	620,000	5,394	48	138
	12月	44.0	140,000	6,160	29.5	150,000	4,425	22.0	440,000	9,680	66	109
	3月	17.2	150,000	2,580	15.0	90,000	1,350	10.6	660,000	6,996	36	56
ES作用強度	8月	8.2	230,000	1,886	15.5	61,000	946	6.2	1,500,000	9,300	19	30
(ELISA)	10月	5.3	170,000	901	1.9	130,000	247	0.1	620,000	62	48	1852
	12月	19.2	140,000	2,688	11.4	150,000	1,710	7.5	440,000	3,300	66	133

表3 多摩川上流処理場及び八王子処理場からの負荷量と St.f における負荷量に占める処理水の割合

- *3月の八王子処理場の流量は平成18年度の一日放流水量(下水道局発表)の数値を使用
- * 濃度:BOD,C-BOD,COD,T-N,T-P = mg/L、全亜鉛 = μ g/L、ES作用強度 = ng/L *流量:m3
 * 負荷量③=濃度①×流量②/1000 単位:BOD,C-BOD,COD,T-N,T-P = kg/日、全亜鉛 = g/日、ES作用強度 = mg/日

- * St.fにおける処理水の流入比率=(上②+八②)×100/f②
- * St.fにおける処理水の負荷量比率= (上③+八③)×100/f③

St. f における河川水量に占める処理水の割合(表3 の流入比率)を試算した結果、3月が36%、8月が19%、 10月が48%、12月が66%であった。また、St.fにお ける負荷量に占める処理水の割合(表3の負荷量比 率) を試算した結果、BODが 73~130%、C-BO Dが $52\sim131\%$ 、CODが $54\sim109\%$ 、T-Nが $47\sim$ 121%、T-Pが64~146%、全亜鉛が49~138%、E S作用強度(ELISA法)が30~1852%であった。 負荷量比率が 100%を超える場合には、下水処理場か らの流入物質が河川の流下に伴って自然分解されたか、 あるいは河川内に蓄積されたと考えられた。ただし、 ES作用強度の1852% (10月) という高い比率につい ては、他の調査月の結果と比較すると河川水の値が非 常に低いため、自然分解のほかに分析誤差の可能性も 考えられた。

5 おわりに

多摩川中流部における縦断的な水質調査を行った 結果、ほとんどの水質項目で処理水の影響を受けてい

ることが分かった。特に、流入直後の地点における濃 度変化は大きく、河川水量が少なくなる冬季では処理 水の影響は大きいと考えられた。処理水に含まれる窒 素やりんは河川が持つ自浄作用でも十分に処理されな いため、多摩川が後に流入する東京湾の水質への影響 が懸念された。処理水に含まれる窒素やりんを削減す るために、処理場での高度処理の推進が求められる。

参考文献

- 1) 東京都:東京都水辺環境保全計画-快適な水辺環 境をめざして一、東京都環境保全局水質保全部(1993) 2) 東京都環境局: 平成18年度公共用水域の水質測定 結果、pp15、東京都環境局自然環境部水環境課(2007)
- 3) 東京都環境保全局:水質汚濁関係通達・疑義回答 集、pp 271-278、東京都環境保全局水質保全部水質規 制課(1991)
- 4) 嶋津暉之ら:多摩川等の環境ホルモン問題に関す る研究(その3)、東京都環境科学研究所年報2000、 pp165-175 (2000)