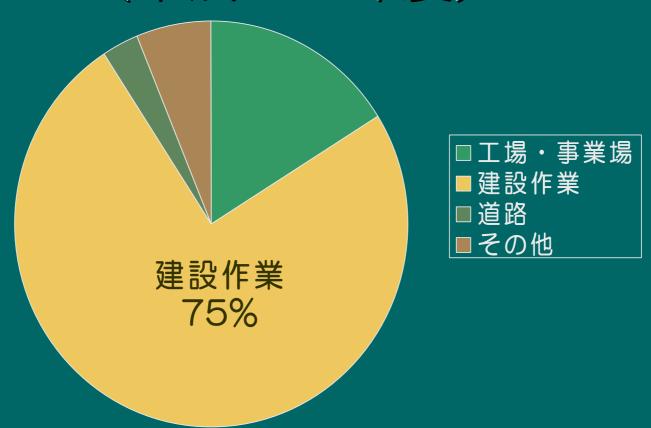
振動苦情の実態と新たな測定法


環境科学研究所 調査研究部門屋 真希子

苦情件数は急増!

(出典:平成16年度振動規制法施行状況調查(環境省)

東京都における苦情内訳 (平成16年度)

出典:東京都振動規制法施行状況調查(東京都環境局)

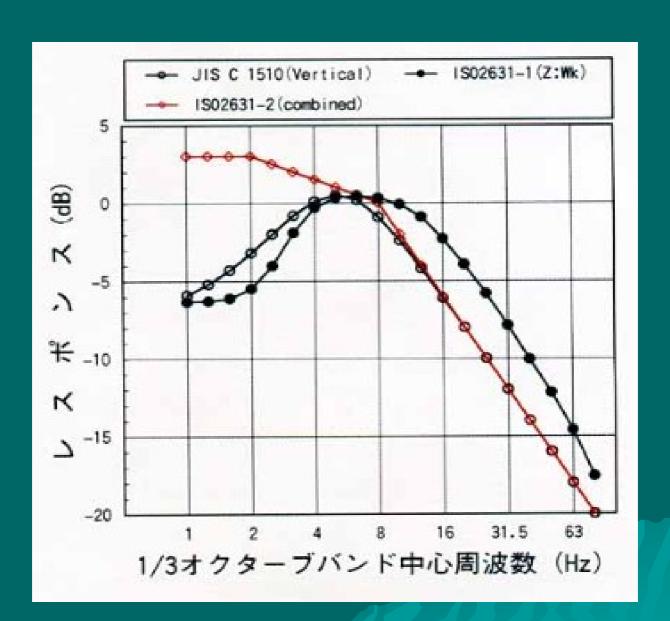
振動の特徴

- ① 地震に比べてごく弱い振動
- ② 振源はごく近い
- ③ 一般に垂直振動が水平振動より大きい
- 4 振動の中心周波数は1~80Hz

振動規制法 (昭和51年法律第64号)

- 規制対象
 - 工場振動 …特定施設
 - 建設作業振動...特定建設作業
 - 道路交通振動
- 規制対象地域(指定地域)
- 規制方法敷地境界における垂直方向の 振動レベル

振動レベルとは...


振動レベル

振動加速度に人体の振動に対する振動感 覚補正を行った量をdB表示したもの

振動感覚補正(周波数特性)

振動は、周波数により振動の感じやすさが異なるため、人が不快に感じる周 波数を重みづけして補正したもの

周波数補正特性(乙軸)

測定方法と規格

JIS C 1510に準拠して行う。

JIS C 1510では、垂直方向と水平方向の2方向の振動感覚補正を有するが、垂直方向のみを用いて測定する。

苦情件数と基準超過件数

	苦情件数	基準超過件数	
特定工場等	769	44	
建設作業	1,932	13	
道路交通	348	1	

(出典:平成16年度振動規制法施行状況調査(環境省)

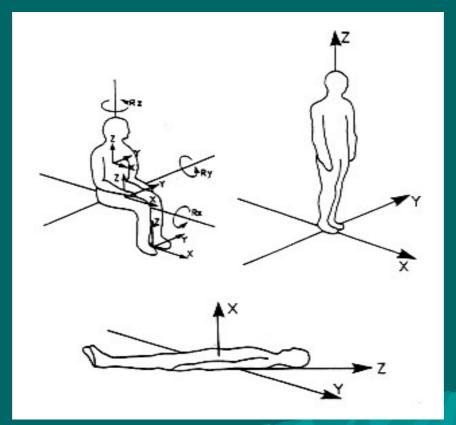
振動規制法の課題

- 敷地境界での規制
- 垂直方向のみの規制
- ・ 国際規格との乖離 振動を受ける箇所での評価

振動に関する国際規格 一振動を暴露される箇所での評価一

ISO 2631-1(1997)

全身振動の計測・評価に関わる一般事項、3方向の周波数特性


- 1 健康影響評価
- ② 快適性
- ③ 振動知覚 (振動感覚閾値)
- ④ 乗り物酔い

ISO 2631-1に対応する日本の規格

- · JIS B 7760-1(平成16年3月) 全身振動測定装置
- ・JISB7760-2(平成16年3月) 全身振動測定方法及び評価に関す る基本的要求

全身振動とは...

振動している支持面から臀部、足、背中などを通じて全身に伝わる振動

全身振動測定装置による屋内振動の測定

目的

全身振動測定装置による振動データの 収集と屋内振動評価への活用について 検討する。

• 調査内容

屋内に全身振動測定装置と振動レベル計を設置し、さらに玄関と振動伝搬経路上に振動レベル計を設置した。

- 調査対象建設作業現場周辺の木造戸建住宅
- 測定項目振動加速度(3軸)
- 測定方法

全身振動測定装置、振動レベル計及 び騒音計によりデータレコーダーに WAVEファイルとして録音した。

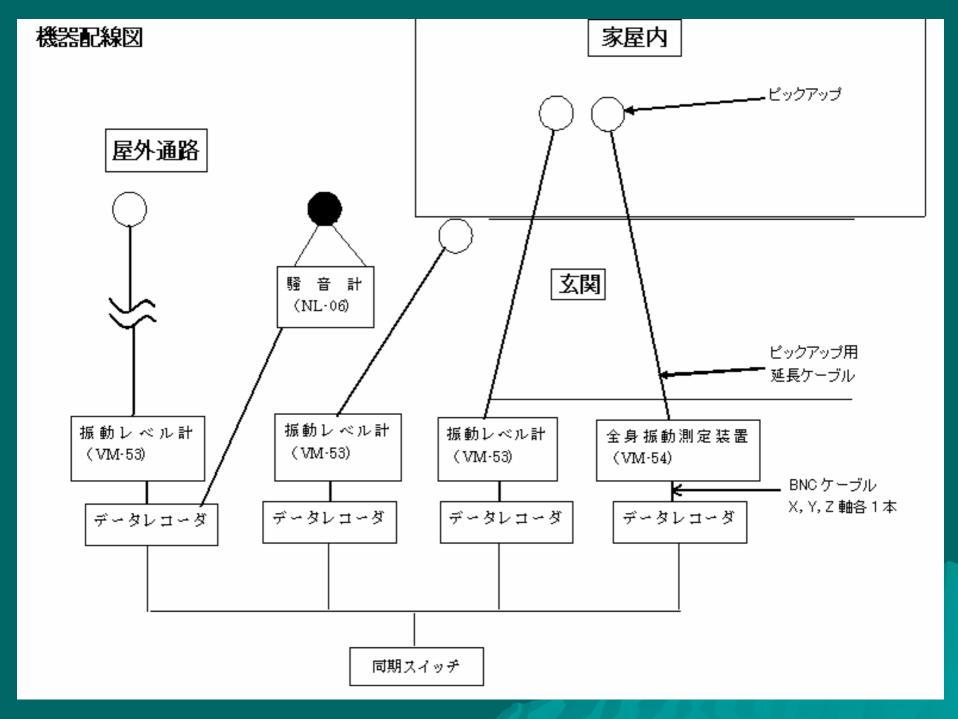
解析人体応答評価(6つの評価量)の計算

調査場所及び機器設置状況

調查場所

玄関

野外通路


全身振動測定裝置

全身振動測定装置

ピックアップ

全身振動に係る評価量

評価量	概要	
RMS (補正加速度実効値)	周波数補正後の振動加速度の計測時 間における実効値	
MTVV (最大過渡振動値)	衝撃性のある振動の評価	
CF (クレストファクター)	瞬時値の最大値と実効値の比で、 ピークの状況を表す指標	
VDV (振動暴露量値)	衝撃性のある振動の評価	
ピーク値	計測時間における最大の振動加速度	
合成振動値	3軸の振動加速度2乗値について係数 を乗じて合計した値の2乗根	

振動の評価

- 基本評価法 RMS による評価
- 基本評価法の適用範囲 CF
- 補足評価 MTVVとVDV
- 基本評価法と補足評価法の比較

測定結果 (例)

方	RMS	CF	MTVV	VDV	ピーク値
向	(m/s^2)		(m/s^2)	$(m/s^{1.75})$	(m/s^2)
X	0.0015	7.6	0.004	0.0111	0.0119
Y	0.001	5.6	0.002	0.0074	0.006
Z	0.002	9.3	0.064	0.0155	0.0194

X:住居から振動発生源方向

Y:住居から振動発生源に平行

Z:地面に対して鉛直方向

ピーク値0.01m/s²以上で振動を感知

測定結果のまとめ

- 屋内では、水平方向振動は垂直 方向と比較して無視できるような 振動ではなかった。
- 今後の測定データの積み重ねと 6つの評価量の解析が必要であり、 種々の振動波形に区分して調査を 実施していく。